Ecological Zones in the Southern Blue Ridge: 3rd Approximation

Steven A. Simon, Ecological Modeling and Fire Ecology Inc., Asheville, North Carolina

12/31/2011

A 3rd approximation of Ecological Zones in the Southern Blue Ridge was developed from over 5,800 field reference sites, 29 computergenerated environmental variables, and intensive analysis and adjustment of ecotone boundaries using local environmental relationships between types. Oak-dominated Ecological Zones (orange, gray, bluish green, purple in map) accounted for about 45% of the over 8 million acre landscape, Cove Ecological Zones 30% (red and dark blue), and Pine-Oak Ecological Zones 17% (green). The remaining 8% of the landscape included Alluvial Forest, Northern Hardwood, Floodplain, Spruce-Fir, Heath Bald, Grassy Bald, and lakes.

INTRODUCTION

Ecological Zones are units of land that can support a specific plant community or plant community group based upon environmental factors such as temperature, moisture, fertility, and solar radiation that control vegetation distribution. They may or may not represent existing vegetation, but instead, the vegetation that could occur on a site with historical disturbance regimes. Ecological Zones are equivalent to Biophysical Settings (BpS) which represent the vegetation that may have been dominant on the landscape prior to Euro-American settlement and are based on both the current biophysical environment and an approximation of the historical disturbance regime. Map units are defined by Nature Serve Ecological Systems, a nationally consistent set of mid-scale ecological units (LANDFIRE 2009). Ecological Zones are mapped at a higher resolution than BpS and have more vegetation categories.

Ecological Zones in the Southern Appalachian Mountains, identified from intensive field data that defined plant communities, were associated with unique environmental variables characterized by digital models (Simon et. al., 2005). These zones were mapped on over 5 million acres by applying logistic regression coefficients to digital terrain models using a geographic information system. In that 2001 study, Ecological Zones subdivided the forested landscapes in the Southern Appalachian Mountains into homogeneous units for natural resource planning at a range of scales. Since that study, Ecological Zones have been mapped in Kentucky, Tennessee, in the Uwharrie Mountains, and the South Mountains, Northern Escarpment, and New River Fire Learning Network (FLN) landscapes in North Carolina, and in Virginia and West Virginia, centered on the George Washington National Forest (fig. 1). This report documents the methods and results of the most current effort to improve Ecological Zone models and mapping in the Southern Blue Ridge (SBR).

Figure 1. Location of Ecological Zone mapping in the Southeastern U.S.

SBR Ecological Zones - background: Ecological Zones were used in 2001 to define units of land that can support a specific plant community or plant community group based upon environmental and physical factors that control vegetation distribution in the SBR. In 2008, The Nature Conservancy provided support to evaluate the usefulness of an updated ecological zone map to predict landscapes that support fire-adapted plant communities in the Southern Blue Ridge Fire Learning Network (SBR-FLN). In 2011, The U.S. Forest Service provided support to develop and expand an improved 3rd Approximation of Ecological Zone mapping in the SBR. The following summarizes the progression of model development, parameter, and incremental improvements made in the different approximations (table 1).

Table 1: Comparison of SBR Ecological Zone development parameters									
	1 st Approximation	2 nd Approximation	3 rd Approximation						
Extent	5.6 million acres	5.9 million acres	8.2 million acres						
Grid cell size	98'x98'	33'x33'	30'x30'						
Reference plots	2,475	4,300	5,842						
Environmental variables in GIS	25	20	29						
Number of Zones modeled	11	16	20						
Analysis tools	logistic regression	maximum entropy	maximum entropy ecotone adjustment						
Producers accuracy (Appendix VII)	36%	52%	79%						

General description: The SBR study area consists mainly of the mountainous region of western North Carolina, eastern Tennessee, northern Georgia and northern South Carolina (cover page). The region's climate is characterized as modified continental, with warm summers and cool winters. Recorded precipitation ranges from a low of 38 inches at Asheville to 91 inches at Lake Toxaway. Most summer precipitation results from thunderstorms associated with maritime weather patterns that are influenced by the Gulf of Mexico; winter precipitation results from continental weather systems. Generally, precipitation is evenly distributed during the year with no pronounced dry or wet seasons, although winter precipitation tends to be considerable higher in the southern part of the study area. Relief is characterized by discrete ranges of relatively high mountains with rounded peaks that are separated by broad, somewhat hilly intermountain basins. Elevation ranges from below 1,000' near Westminster South Carolina, Forest City North Carolina, and Maryville Tennessee to 6,684' at Mt. Mitchell. The varied gently rounded relief of the study area is primarily attributable to a combination of warm, humid climate and geologic formations of differing resistance to erosion, which has been occurring for about 300 million years during a relatively long period of geologic stability with no mountain-building episodes (Hack 1982, Pittilo and others 1998). Geologic formations of the study area are among the oldest, most complexly arranged, and compositionally varied in the Eastern Unites States. Most have undergone one or more periods of metamorphosis, during which the original rocks were weathered and eroded into components that were transformed to other rock types by varying degrees of heat and pressure, making accurate age determinations doubtful (Hatcher 1972). Generally, formations of the Blue Ridge Province are primarily metasedimentary types with lesser areas of sedimentary and intrusive rocks. Most geologic formations weather to form soils of acidic reaction. However, localized areas of hornblende gneiss are present throughout, which weathers to produce soils of less acidity. Rock formations range in age from middle Proterozoic (1 billion years) to Permian (250 million years), but age is less important than rock mineral content and texture in determining soil properties that can influence plant species composition.

METHODS

"Spatial models built with geographic information systems (GIS) provide a means to interpolate between data points to provide spatially explicit information across broad scales. By accounting for variation in environmental conditions across these broad scales, GIS models can predict the location of ecological communities within a landscape using relationships between vegetation and topography (e.g., Fells 1994, Bolstad et. al. 1998, Phillips 2000) derived from field data" Pearson and Dextraze (2002). The process of interpolating between field data points involves applying coefficients from predictive equations, developed through statistical analyses, to geospatial data that characterize terrain and environmental variables for the target landscape. Care must be taken not to extrapolate to landscapes far away from data points or to landscapes having very different environmental characteristics, therefore, since most of the data was collected on federal land in the study area, Ecological Zone predictions outside of these areas are likely less accurate. A multi-stage process was used to model Ecological Zones in the study area that included: 1) data acquisition, i.e., identifying Ecological Zones at field locations, 2) creating a digital terrain GIS database and extracting environmental data, 3) statistical analysis, 4) modeling individual Ecological Zones and evaluating ecotones, i.e., the transition between Ecological Zones using local environments, 5) post-processing of digital model outputs, and 6) evaluating the accuracy of Ecological Zone map units.

1) <u>Data acquisition</u>: Much of the vegetation data used in the 1st approximation originated from the North Carolina Vegetation Survey (Peet and others 1998). Field data were obtained also from 20 investigations of vascular vegetation that had been conducted in the Southern Appalachian Mountains between 1976 and 1991 (table 2). In those studies, natural stands generally > 75 years of age and not obviously recently disturbed were subjectively and randomly selected to represent uniform site conditions. Sampling methodologies for studies after 1990 followed the North Carolina Vegetation Survey (Peet and other 1998); earlier studies used field methods of either Whittaker (1956) or Braun-Blanquet (1932). The field plots from these investigations were classified into groups of similar species composition using a sequence of constancy and ordered tables, indicator species analysis, followed by quantitative multivariate methods that included cluster analysis and indirect ordination (Ulrey 1999). The goal of the classification was to identify units of compositionally similar vegetation for the purpose of inventory and assessment. These units of vegetation were termed Ecological Zones and formed the basis for subsequent field sampling in the SBR. Vegetation data for the 2nd and 3rd approximations, therefore, did not include additional intensive plot sampling or quantitative plant community classification of field data. Because the Ecological Zone classification units are relatively coarse and fairly easy to recognize in the field, the 2nd and 3rd approximation field work consisted of documenting (through GIS, notes, and photos) the location of reference plant community types and Ecological Zones to improve the distribution of plots across the study area (fig. 2). A laptop computer attached to a Global positioning system (GPS), to enable real-time location tracking in the field, was used in conjunction with ArcGIS to document on-site observations of ecological characteristics and to access resource data layers for each site. Sample sites predominantly in forested stands >60 years of age and not recently disturbed, were subjectively selected to represent uniform site conditions, i.e., similar aspect, landform, and species composition. Specifically, these reference sites for plant community types described in the literature for the Southeastern U.S. and in the 1st SBR approximation were targeted especially if they were in 'good condition' and therefore more easily recognized. Of equal importance, was the evaluation of where these types occurred, i.e., their pattern on the landscape. 'Good' condition plant community types found repeatedly within the same environments were therefore more heavily sampled. Some large floodplains, mostly on private land, were assessed from topographic maps and LANDFIRE BpS map units (LANDFIRE 2009) for inclusion as sample points but were not sampled in the field.

Study Area	plots	Field Investigators (in order of contribution)
SBR 1 st approximation	1,983	C.Newell, B.Peet, C.Ulrey, S.Simon, D.Mcleod, H.Mcnab, T.Wentworth, J.Delapp,
		P.White, K.Patterson, C.Small, S.Roberts
SBR 2 nd approximation	1,929	S.Simon, G.Kauffman, D.Danley
SBR 3 rd approximation additions	1,930	
BpS assessment	99	S.Simon
Community element occurrences	7	NC Natural Heritage Program
South Mountains FLN landscape	300	S.Simon
North Escarpment FLN landscape	159	S.Simon
New River FLN landscape	40	S.Simon
Cherokee NF North Zone	934	S.Simon, J.Kelly
Area-wide	391	J.Kelly
TOTAL SBR 3 rd approximation	5,842	

Table 2: Plot intensity	and data sources	(field investigators) used in the different SBF	approximation
	and data sources	(inclu investigators	y used in the unrerent spi	approximations

Vegetation had been sampled throughout the entire study area in the 1st approximation, although sampling was clustered in about 10 locations. The distribution of plots across the study area was improved and the study area boundary expanded in the 2nd and 3rd approximations (fig. 2). There are still, however, several elevation zones where reference plant communities have not been adequately documented because of access difficulty or poorer vegetation condition. Depending upon the perspective of scale, elevations below 1500' are under-sampled across the project area but adequately sampled on federal lands. On Federal land, elevations between 2500' and 3500'

have been under-sampled and could therefore lead to less accurate modeling in these areas (table 3). On the other hand, elevations greater than 4000' have been over-sampled.

Figure 2: Field reference plots used in the SBR 3rd approximation (FLN landscapes are outlined).

Table 3. Ecological Zone plot sampling intensity by elevation class within the SBR project area, federal land, and Nantahala-Pisgah National Forests (under-sampled classes highlighted).

and randomar i span radionar i orests funder sampled classes inginighted).												
elevation	<	1501-	2001-	2501-	3001-	3501-	4001-	4501-	5001-	5501-	>	
class	1,500'	2000'	2500'	3000'	3500'	4000'	4500'	5000'	5500	6000'	6000'	
SBR Project area – all lands												
% plots	8.1	14.3	13.0	14.6	12.7	12.6	10.1	8.4	3.8	1.9	0.5	
% of area	21.8	14.7	18.6	16.8	12.8	8.1	4.1	1.9	0.8	0.3	0.1	
				A	ll Federal o	wnership						
% of area	5.5	14.6	16.2	17.4	16.4	13.0	8.5	4.9	2.4	1.0	0.2	
Nantahala-Pisgah NFs ownership												
% of area	2.2	10.2	13.7	19.3	20.1	16.3	10.2	4.8	2.2	0.8	0.1	

<u>2) Creating a digital terrain database</u>: Development of the individual Ecological Zone models began with the creation of a spatial database that describes the study area environment using landform and environmental variables. Site conditions for each field plot were extracted from these 29 landform / environmental models (DTMS) used to characterize these variables in a GIS (table 4). For statistical analyses, data were stored in a database that included plot number, Ecological Zone, and digital landform / environment values for each plot. The methods used for developing DTMs are described in detail in Appendix III.

Table 4. Environmental variables evaluated in Ecological Zone models

III Ecological Zolle models
Aspect (slope direction in cosine of radian degrees)
Aspect (slope direction in degrees)
Curvature of land (all directions)
Curvature of land (direction of slope)
Curvature of land (perpendicular to slope)
Elevation
Geology (distance to rock type)
Carbonate-bearing
Mafic-silicate
Siliciclastic
Carbonaceous-sulfidic
Mixed
Ultramafic
Landform10 (10x10 pixel neighborhood)
Landform30 (30x30 pixel neighborhood)
Landform index (from McNab 1993)
Precipitation (30 year average from 1971-2000)
Relief (local)
Relative slope position – local landscape (from Wilds 1997)
Relative slope position – mid-level landscape scale (Wilds modified)
Slope length
Slope steepness
Solar radiation (yearly)
Stream influence
difference in elevation from nearest stream
distance to nearest stream
River influence (4 th order and greater streams)
difference in elevation from nearest river
distance to nearest river
Terrain relative moisture index (from Iverson et.al. 1997)
Terrain shape index (from McNab 1993)
Valley position

3) Statistical analysis: The relationship between Ecological Zone and environments, described by DTMs, were analyzed and predictive equations developed at this stage of the process. Ecological Zone field locations were used to train habitat suitability models using MAXENT 3.2.1 (Phillips and Dudik 2004). MAXENT (maximum entropy) is a relatively new modeling approach (Phillips, et. al. 2004, 2006) that emphasizes the ecological characteristics of a location where a target species is observed (an Ecological Zone in our case) as the primary focus while presuming nothing about locations where these conditions are not observed. MAXENT, unlike logistic regression, is therefore a "presence only" modeling approach; it used only Ecological Zone presence (the field reference data) to estimate individual Ecological Zone models across the study area. MAXENT works by finding the largest spread (maximum entropy) in a geographic dataset of Ecological Zone presences in relation to a set of environmental predictors for these same locations and 100,000+ randomly selected points / pixels within the study area. The MAXENT logistic outputs are continuous estimates of habitat suitability (probability) for each Ecological Zone ranging from zero to one for each pixel within the study area. Rare plant communities such as barrens, bogs, cliff-talus, fens, glades, seepage swamps, or small wetlands were not included in this analysis because the digital data needed to model these unique environments, especially rock outcrops and wetlands, are incomplete or at too coarse a resolution for the objectives of this project. The process for developing models for 20 mid-scale Ecological Zones occurring in the project area is described in Appendix IV.

4a) Spatial modeling / creating preliminary Ecological Zone map units: To produce a preliminary aggregate Ecological Zone (Zone) map, the 20 Zone models were merged and each pixel in the study area was assigned to the Zone having the highest probability for that pixel. In the event of a "tie", preference was given to the less extensive Zone by adjusting the ArcGrid 9.3.1 Merge command preference of order (ESRI 2009).

4b) <u>Evaluating the transition area between Ecological Zones (ecotones)</u>: Although MAXENT worked well to predict the distribution of individual Zones, merging the models often did not reflect the field reference data. This was due to different model 'strengths' and the confusion between types occurring in similar environments; model and field plot discrepancies were predominantly in the transition area between Zones, the ecotone. To better balance individual Zone model strengths and improve the overall model accuracy, an analysis of these ecotones

was completed. This analysis used accuracy evaluations based upon reference plots (appendix VII) at different modeling stages and within different landscapes to determine the environmental conditions, e.g., an elevation range, a slope position, etc. where minor adjustments in model probability levels would result in reduced confusion (error) between classes (types). It was assumed that, because reference plots are used to 'train' Zone suitability models in MAXENT, the environmental relationships observed at these locations should also 'train' 'correct' adjustments elsewhere. For example, at lower- to mid-elevations, MAXENT probabilities at Pine-Oak Heath reference sites were slightly lower relative to other Zones at these same locations, especially Dry-Mesic Oak. By slightly increasing Pine-Oak Heath probability levels within a narrow segment of the environment (not just at reference sites), the distribution of this Zone and overall accuracy of this type could be improved (judged by further accuracy evaluations and local knowledge of this Zone's distribution). This process is described and discussed at length in Appendixes V-VI.

5) <u>Post-processing of digital model outputs</u>: Post-processing was used to reduce "data noise" i.e., the number of isolated single 30x30 foot pixels (about 1/50th of an acre in size) within the combined Ecological Zone model area and to improve processing time for converting pixels to polygons. This post-processing included 1 ArcGrid Majority filter command which replaces cells in a raster based on the majority of their 8 contiguous neighboring cells. If there is a desire to produce maps having a defined minimum map unit size, then further processing is recommended using the ESRI "eliminate" command, however this tends to overemphasize the size of major types at the expense of less common types.</u>

6) <u>Assessing the accuracy of Ecological Zone map units</u>: Field plots were used as reference data to evaluate the accuracy of the final Ecological Zone maps. Although this is a biased measure of accuracy because these were the same data used to produce the predictive equations, MAXENT does not force a classification upon a sample plot based upon its location, rather, environmental data from that location is used to model the **entire** landscape with no bias to where a plot is located. Also, using field plots as reference data is a reasonable means of objectively comparing different analysis methods and does indicate how well map composition reflects the plot data composition in these landscapes in comparison to other areas where Ecological Zones have been identified.

RESULTS and DISCUSSSION

The location, extent, accuracy, and usefulness of Ecological Zones modeled in the study area were evaluated from the following:

Relative importance of environmental factors in predicting Ecological Zones (tables 5-9, fig.4),
 Influence of local environments on competing Zones, i.e., adjustments within the ecotone (fig. 3, appendix VI),

3) Accuracy of map units relative to field sample plot information (tables 10-12, appendix VII), and the 4) Location and extent of Ecological Zones and BpS / Nature Serve Ecological Systems based on acreage of map units (tables 13-16), and both broad-scale displays and those relative to topography (figures 5-9).

1) Relative importance of environmental factors: The importance of temperature, moisture, fertility, and solar insolation that control Ecological Zone distribution in the study area can be evaluated by looking at those DTM variables used most often and therefore having the most predictive contribution to the Zone models (table 5). Elevation, the distance to carbonate geology, and local relief had at least a 5% contribution in at least half of all Ecological Zone models. Five of the top 10 variables were associated with geology, and although many of the relationships were "the further away from a rock type the greater the gain in model prediction", this is still an indication of the effect that fertility has on plant community distribution in the study area. Local relief and valley position, within the top 10 variables used, reflect the broader scale influence of landscape configuration and topography on moisture and temperature gradients, so important in the area, while distance to or elevation above the closest stream or river, relative slope position, and slope steepness helped to define finer-scale variation in Ecological Zone distribution. These finer scale variables along with elevation have a strong effect on temperature and moisture regimes. On the other hand, solar radiation / aspect, terrain relative moisture index, and most surface curvature variables used to describe more fine-scale conditions, made little contribution in the initial MAXENT models. This is likely due to redundancy within the environmental variable set, i.e., other variables were better able to explain these same factors. For example, slope steepness, relative slope position, and terrain shape

index individually might better explain moisture regime than terrain relative moisture index (TRMI) which combines these same variables into one value (appendix III).

Table 5. Importance of environmental varia	bles use in predicting Ecological Zones
in the SBR study area	

	%	of model	s ^{1/}
Environmental variable	Total	South	North
Elevation	68	83	53
Distance to carbonate geology	68	78	58
Local relief	54	50	58
Distance to sulfidic geology	46	39	53
Distance to mixed geology	46	39	53
Distance to mafic geology	35	33	37
Distance to siliciclastic geology	32	33	32
Difference in elevation or distance from the nearest stream (Strmdiff, Strmdist)	32	50	16
Difference in elevation or distance from the nearest river (Rivdiff, Rivdist)	32	17	47
Valley position	22	22	11
Relative slope position (fine and broad scale)	22	22	21
Landform Shape (Lndform10, Lndform30)	22	28	16
Slope steepness	11	11	11
Slope direction (Aspect degrees, Aspect cosine, Solar radiation)	8	11	5
Average annual precipitation	8	11	5
Landform index	5	6	5
Surface shape (TSI, Curve, Curvepl, Curvepr)	3	0	5
Slope length	0	0	0
Terrain relative moisture index	0	0	0

^{1/} percent of all models where variable made at least a 5% contribution to the prediction gain

The relationship between plant community type and the environments in which they occur (the Ecological Zone) can also be evaluated by examining the relative importance of environmental variables found by MAXENT to be the best predictors of Ecological Zone location and by assessing the mean values for each variable (tables 6-8). Some of these relationships are fairly straight-forward, others are not. For example, MAXENT (tables 7-8) identifies elevation as the primary or secondary environmental factor that defines the distribution of Grassy Balds, Heath Balds, Spruce-Fir, and Northern Hardwood (slope and cove), which have the highest mean elevation based upon plot locations, and for Shortleaf-Oak which has one of the lowest mean elevations in the project area. Midto fine-scale variables related to stream and river influence (Dstrm, Sdiff, Driver, Rivdiff), landform shape (Lfm10, Lfm30), and slope position (Rsp1, Rsp2) were important in defining all the cove-oriented types (Northern Hardwood Cove, Rich Cove, Acidic Cove, Montane Oak cove, and Alluvial Forests), i.e., these types are always (most always with Acidic Cove) found in lower concave positions nearer to streams or rivers than other Zones. In addition, other environmental variables used by MAXENT (when not 'masked' by the influence of geology), singly or in combination, reflect well those conditions found for types occurring in more unique or limited environments such as High Elevation Red Oak that occurs at high elevations and well away from streams or rivers, and Floodplains that occur in the lowest valley positions and nearest to rivers. However, even in these types, relief, elevation, and geology often had a greater influence on their broader landscape distribution predicted with the MAXENT modeling. This resulted in the need to use finer scale variables to refine boundary (ecotone) differences among adjacent types (see the following 'influence of local environments' discussion).

		Temp.	Fertility (Distand	ce to Geol	ogic Type	, in 1,000	s feet) 1/	Moistur	e, Tempe	rature, Ra	adiant E	nergy, a	nd Ferti	lity ^{2/}	
map code	BpS / Ecological System	ELEV. ft.	GEO1	GEO2	GE03	GEO4	GEO6	SLOPE	VPOS	RPOS	ASP	SOL	TSI	SDIF	PREC
27	Grassy Bald	5,630	77.4	10.5	9.3	24.0	8.1	22	7	7	07	16.2	2.2	590	69
1	Spruce-Fir	5,420	109.6	15.7	14.9	34.3	9.1	44	26	30	.27	14.3	01	310	72
2	Northern HW Slope	4,500	122.9	15.5	19.9	24.2	3.6	46	44	50	.32	13.4	-2.3	140	69
3	Northern HW Cove	4,765	131.0	15.4	21.8	26.6	3.3	48	31	27	.27	13.9	1.0	270	72
4	Acidic Cove Forest	2,640	95.9	15.1	7.6	71.1	13.0	37	60	57	.11	13.5	-3.9	40	61
29	Mixed Oak/rhodo.	2,900	133.2	12.3	6.1	102.7	13.7	49	41	33	.44	12.5	0.6	170	62
5	Rich Cove Forest	3,190	113.4	16.1	15.1	42.0	6.1	46	51	51	.25	13.0	-3.3	115	64
6	Alluvial Forest	1,410	68.4	11.7	5.9	126.6	18.7	7	85	49	.10	13.6	-2.4	6	52
8	High Elevation Red Oak	4,690	138.7	14.4	18.9	37.2	3.8	38	21	16	08	14.9	2.7	330	72
24	Montane Oak Rich	4,190	42.0	52.4	5.6	69.0	17.8	22	9	7	.20	14.3	2.9	425	48
9	Montane Oak Slope	3,545	94.4	20.8	9.6	50.2	6.9	45	34	25	04	13.9	1.2	220	61
28	Montane Oak Cove	2,590	84.7	27.4	5.5	77.5	13.2	40	49	48	.02	13.6	-2.5	100	58
13	Dry-Mesic Oak	2,300	140.7	20.6	3.1	87.0	11.6	40	43	35	15	13.9	8	140	63
10	Dry Oak/ever. heath	2,840	124.4	18.8	2.9	85.5	10.5	38	34	21	12	14.0	2.4	200	63
11	Dry Oak/decid. heath	2,250	93.5	22.4	2.7	133.0	15.4	47	31	26	.01	13.4	2.0	220	55
16	Shortleaf Pine-Oak	1,800	169.7	27.7	2.2	62.2	10.2	30	33	18	21	13.9	3.0	146	60
31	Shortleaf Pine-Oak heath	1,590	30.2	.3	3.8	118.0	29.5	28	40	11	25	13.4	4.4	138	54
18	Pine-Oak Heath	2,690	69.1	19.8	3.5	86.4	17.3	41	27	15	26	13.9	3.9	280	55
23	Floodplain Forests	1,560	43.6	47.2	4.0	53.3	10.6	3	87	37	.22	13.9	3	5	50
30	Heath Bald	4,850	77.5	21.6	19.1	21.9	0	50	22	6	12	13.8	9.5	410	65

Table 6. Mean values for environmental variables that describe temperature, fertility, moisture, and insolation gradients within Ecological Systems based on reference plot locations (some values are rounded).

^{1/} Geo1 = Carbonate-bearing rock, Geo2 = Mafic-silicate rock, Geo3 = Siliciclastic rock, Geo4 = Carbonaceous-sulfidic rock. ^{2/}Slope in percent, VPOS = valley position (100 = valley bottom, 0 = major ridge top), RPOS = relative slope position (100 = bottom of slope, 0 = top of secondary or major ridge), ASP = cosine of aspect (smaller = more south, larger = more north), SOL = solar radiation (unit watt hours per square meter in millions), TSI = terrain shape index (land surface shape, negative numbers are degree of concavity, positive numbers are degree of convexity), = SOIF = difference in elevation above the nearest stream (ft).

Table 7: Percent contribution of variables used in Ecological Zone models in the SBR study	/ area (north)	
			-

EZONE	Gbald	SF	NhS	NhC	Acove	Orhodo	Rcove	Alluvial	Flood	Hero	MonR	MonS	MonC	Dmoak	DryE	DryD	Sloak	Poh	Slpoh
Asp_c			2	2	-	3	1	-		1		1	1	-	2	-	-	1	
Asp_r		-		-	1	1	2	-				1	2	2	2		3	2	
Curve			-			-	-					-	1	-	1				
Curpl		-				-		-				2		-	-		-	-	
Curpr	-	1			-		-			-	-	1	-	-	-			-	
Driver		3	1	1	1	1	1	1	-	+6		1	2	-	2	-	4		
Dstrm	3		1	-	-10	-	1	-		3	3	1	-	2	4	+11			1
Elev	+65	+86	+60	+71	3	9	3		3	+38	2	+26	4	8	2	3	-17	2	-5
Geo1		4	-5	-	-19	2	-5	4	-32	1	-6	1	1	-17	-15	-8	-23	-10	-37
Geo2		1	1	3	1	1	6	2	+11	-	+36	+18	15	2	2	1	6	1	-12
Geo3		2	1	2	4	-6	3	4	1	4	2	-	4	-5	-7	-13	-5	-6	1
Geo4			1	2	+6	+17	3	+5	1	3	-	2	+6	+17	+14	+28	+8	+10	+14
Geo6	-	-	-	2	+16	+25	2	+7		1		4	+20	+25	+14	15	+20	+22	+16
Lfm10		-		-	+14	1	3	-	2	-		-	3	-	2	-	1	-10	1
Lfm30			-	-	1	-	1	-		-		2	-5	1	-		-		-
Lfi				-	-	1	+6	4			1	1	2	-	1	-		-	-
Prec		1			+7	4	1			-	-	1	3	2	2	2	1	1	
Relief		1	1	+9	+8	+15	+38	1	-	-		+23	+13	+11	+17	+10	4	+12	+8
Rivdiff	+13	1	+22	1	1	1	-	-49	-30	+31	+18	3	3	-	2	7	1	+9	-
Rsp1	-	-	-	3	2	-	+5			-		2	1	1	3		3	1	1
Rsp2	-		-	-	2	-	+12	-		4	-9	1	3	1	-			3	-5
Sdiff		-	4	2	2	1	1	-	-	-		3	1	-	4	-	4	+5	1
Sleng			-		-	-	-	-					1	-	-				-
Slope		-		-	-	1	1	-7	-15	-	-	1	1	1	1	-	-	-	-
Solar	-	-	-	1		-8	3			-		1	3	1	2	1		-	
Trmi		-		-	-	-	1			-		-	1	-	-	-	-	1	
Tsi		-	-		-	2	-		1	-		-	6	1	2		-	1	
Vpos	-18	-	-	1	2	1	2	+12	4	-6	-23	1	1	1	1	2	1	3	
# plots	20	64	47	75	614	127	221	69	32	78	11	170	92	221	112	60	77	349	44

^{1/} the + or – sign that precedes the variable value (for variables having at least a 5% contribution) indicates the relational direction of the variable. For example, elevation in Spruce-fir (SF) is +86 which indicates that as elevation increases, so does the 'gain' in the model prediction for this type. No sign indicates either that the gain is not linear or that there is confusion in interpreting the relationship.^{2/} less than 1% but included in the prediction equation, blank indicates a variable that was not included in the prediction equation.

									-					-		-	-	
EZONE	Gbald	SF	NhS	NhC	Acove	Orhodo	Rcove	Alluvial	Flood	Hero	MonS	MonC	Dmoak	DryE	DryD	Sloak	Poh	Hbald
Asp_c		1	-	1	-	+8	2	2	3	-	1	2	1	2	-	1	2	1
Asp_r	-	-	-	3	-	+8	2	2	-		1	2	-	1	-	-	4	1
Curve	-				-		-			-	2	2	-	-		1		-
Curpl						-	-				-	2	-	1	1	-	-	
Curpr	-		-		-	-		-		-	-	2	1	-			-	
Driver		-	2	1	1	1	2		-25	-	1	2	1	-	-	2	1	
Dstrm	+39	1	1	-	-32	1	-		1	1	1	1	1	1	2	-	1	-
Elev	+43	+81	+75	+69	5	+10	-14	-	1	+75	+21	+5	7	+6	1	-21	+8	+25
Geo1		2	4	7	8	+15	-5	-30	1	5	-9	-16	36	+16	24	+18	19	-6
Geo2		-	1	1	4	3	2	1	1	1	4	7	8	5	4	15	+7	+6
Geo3	-	4	+7	+5	2	4	+8	-14	2	3	4	3	-6	3	+6	3	3	1
Geo4	-	1	2	1	2	+6	2		-7	-	+7	+11	+11	+18	+12	2	3	2
Geo6		1	1	1	4	-11	3	4	2	1	2	-6	-9	-8	-9	-8	4	-17
Lfm10	1	-		2	+5		10		1		1	1	-	1	1	3	-11	-8
Lfm30		-	1	-	8	-	-	1		2	-	2	-	3		-		
Lfi		-	-		-	1	1	-	1	-	1	1	1	2	-	-	1	+10
Prec	-	3	3	1	4	2	4		-	2	1	-	1	+12	10	1	2	
Relief	-	2	1	2	+15	+16	+37		2	-	+33	+17	13	+6	+10	2	+11	-
Rivdiff	2	3	1	1	1	2	-	3	-	+6	1	2	-	3	4	+8	2	3
Rsp1		-	-	2	1	1	2	-		1	-	+6	1	-		-6	3	-8
Rsp2	-5	-		2	4	-	-		-	-	1	1	-	1	2	-	-	1
Sdiff		-	-	-	1	1	-	-8	-	-	5	-7	-	+6	+9	-	+7	-10
Sleng				-	-	-	-		2	-	2	-	-	1		-	1	-
Slope	-5	-	-	1	-	3	1	-	-6	1	1	1	-	1	3	1	-	
Solar	2	-	-	1	1	3	2			-		1	1	1	-	-	1	-
Trmi	-		1	-	1	1			-		-	-	1	-		-	-	-
Tsi				-		1	2	1			-	1	1	-	1	2	3	1
Vpos	2	-	-	-	1	1	1	+35	+45	2	-	-	1	2	1	-5	-7	-
# plots	14	102	164	257	565	100	544	16	22	308	206	97	379	117	34	206	229	19

Table 8: Percent contribution of variables used in Ecological Zone models in the SBR study area (south).

¹⁷ the + or – sign that precedes the variable value (for variables having at least a 5% contribution) indicates the relational direction of the variable. For example, elevation in Spruce-fir (SF) is +63 which indicates that as elevation increases, so does the 'gain' in the model prediction for this type. No sign indicates either that the gain is not linear or that there is confusion in interpreting the relationship.²⁷ less than 1% but included in the prediction equation, blank indicates a variable that was not included in the prediction equation.

These relationships were apparent in the field and from viewing digital terrain data in comparison to individual Ecological Zone models. What was not obvious in the field was the influence of geology that MAXENT revealed and how / why multiple rock types contribute information for so many Zones. This relationship is most probably due to the fact that the influence of rock types was analyzed as a continuous "distance to" variable and not a class variable. Also, relationships between Ecological Zones and environmental variables get confusing because many variables used in this analysis provide redundant information and are therefore correlated. Elevation, relative slope position, distance to stream, and solar radiation, for example, can all have an influence on temperature and moisture (other variables too). Although MAXENT 'finds' the variable or combination of variables that contribute most to predicting each type, care must be taken in interpreting these relationships because of the complexity of variable interactions and the statistics used in 'fitting' models.

2) Influence of local environments on ecotones and model adjustments made (Excerpted from appendix V): To limit broad-brush refinements of Zone models, ecotone adjustments were made separately within the 'northend model', 'southend model', for each of the unique FLN landscapes (Northern Escarpment, New River Headwaters, Central Escarpment, South Mountains, Southern Blue Ridge Escarpment, Balsam Mountains, Nantahala Mountains, Smoky and Unaka Mountains), and for areas outside FLN landscapes having additional reference plots.

Adjustments of the ecotone between models can be evaluated from two perspectives; the total number of adjustments made within an Ecological Zone, and the total number of times that Ecological Zone was adjusted within other types. If both types of adjustments are considered, the Ecological Zones can be grouped into the following 4 ecotone adjustment categories (arranged from most to least adjustments within category):

Very many Dry-Mesic Oak Montane Oak (Slope) Acidic Cove <u>Many</u> Pine-Oak Heath Montane Oak (Cove) Rich Cove Dry-Oak/Evergreen Heath High Elevation Oak Mixed Oak/Rhododendron

<u>A lot</u> Northern Hardwood Slope Shortleaf Pine-Oak Northern Hardwood Cove Spruce-Fir Dry-Oak/Deciduous Heath Few Alluvial Forest Grassy Bald SL Pine-Oak Heath Heath Bald Floodplain Montane Oak (Rich)

Figure 3: Ecotone adjustments within an Ecological Zone (within type) and the number of times that Ecological Zone was adjusted within other types (outside type).

There were around 100 adjustments made in the initial and subsequent Dry-Mesic Oak Ecological Zone models, 55 'within type' and 46 'outside type' (figure 3), the most of all types. This type along with Montane Oak Slope and Acidic Cove, which also had 'very many' adjustments, account for well over one-third (40%) of the total acres in the 8 million+ project area (thus having an extensive ecotone between other types) and certainly a major reason for needing such a large number of adjustments. This is also true for Acidic Cove which had the most 'outside type' adjustments, and accounts for a significant portion of the total landscape (17% - the most extensive of all types), and because the type can occur in narrow drainage areas that bisect most all 'upland' types, forming extensive ecotones and therefore 'confusion' between type boundaries. The fewest adjustments were made in rare Ecological Zones (Grassy Bald, Heath Bald, Montane Oak Rich, Shortleaf Pine-Oak Heath) that occur in distinct environments and are therefore less 'confused' with other types, or those that are more extensive on private lands (Alluvial Forest, Floodplain) and therefore have fewer reference plots to evaluate.

Adjustments within and between types: Although not considered entirely an ecotone adjustment, the greatest number of model changes was made to differentiate between Acidic Cove and Rich Cove Ecological Zones (17 shared 'within type' adjustments) (appendix VI). Geology, stream or river distance, and slope position or landform shape were the most frequently used local environmental variables (used 5, 4, and 3 times respectively). The next most frequent adjustments were made between Dry-Mesic Oak (Dmoak) and Pine-Oak Heath (Poh), (16 total shared adjustments; 11 within Dmoak and 5 within Poh), and in differentiating between Dmoak and Shortleaf Pine-Oak (Sloak), (15 total shared adjustments: 6 within Dmoak and 9 within Sloak). Curvature, elevation, slope, and stream distance were the most frequent environmental variables used to refine the Dmoak and Poh ecotone boundary, while stream distance, geology, and elevation were the most frequent environmental variables used to refine the Dmoak and Sloak ecotone boundary.

The gain in accuracy within an Ecological Zone was generally related to both the total number of adjustments and the number of types within the Zone that were adjusted, i.e., the greater the adjustment the greater the gain (appendix VI, table 1). However, there are some important exceptions: 1) most of the 'rare' types had significant gains (greater than 30% points) in map unit accuracy with very few adjustments, 2) the 3 types having the greatest number of total adjustments and with at least 10 types needing to be adjusted within their boundaries had relatively modest accuracy gains (Dmoak a 15% point gain, Montane Oak Slope an 8% point gain, and Montane Oak Cove with only a 1% point gain), and 3) one type, Heath Bald actually showed a decline in accuracy from the initial to final model.

Variables used in adjustments: DTM frequency of use can be grouped into the following categories that describe local environments:

Most frequent (40+) Stream distance (strdist) Surface curvature (curve) Elevation (elev) Aspect (aspect) <u>Frequent (32-35)</u> Relative slope position (rsp) Slope (slope) River distance (rivdist) Less Frequent (12-19) Valley position (vpos) Mafic geology (geo2) Landform shape (Ifshape) Landform index (Ifi) Precipitation (prec) Least Frequent (less than 12) Siliciclastic geology (geo3) Mixed geology (geo6) Terrain moisture index (trmi) Carbonate geology (geo1) Relief (rel) Slope length (slen) Sulfidic geology (geo4) Ultramafic geology (geo7)

Topographic/environmental variables used most frequently to describe local environments that might refine ecotone boundaries between types were clearly fine-scale (from a mapping perspective) and included: stream distance, curvature, elevation, and aspect (fig. 4). These variables were used 40+ to 50+ times each in the over 400 adjustments made between the preliminary and final Ecological Zone models (appendix V, table 3). A combination of fine- and mid-scale variables that include relative slope position, slope, and river distance were frequently used. Less and least frequently used were mid-scale variables. This contrasts greatly with variables used in the original Maxent models for each type. While aspect, slope, and curvature were used frequently to adjust ecotone boundaries (over ½ of the models used these variables), they had at least a 5% contribution to prediction gain in less than 12% of the Maxent models (table 5, 9). Similarly, terrain relative moisture index and slope length, which seldom provided even a 2% gain in Maxent models, were used in at least 30% of the models for ecotone adjustments (table 9). Conversely, carbonate geology, sulfidic geology, and relief which had significant contributions in Maxent were among the least frequently used variables in the ecotone adjustments.

Figure 4: Environmental variables (DTMs^{1/}) used in Ecological Zone ecotone adjustments.

Table 9: Comparison of environmental variable use in ecotone adjustments vs. Maxent models

Variable	Ecotone adjustments	Maxent models ^{1/}	% difference
	% of types va	ariable used	iii variable use
aspect	65	8	57
slope	65	11	54
curvature	55	3	52
strdist	75	32	43
vpos	65	22	43
trmi	40	0	40
rsp	60	22	38
rivdist	65	32	33
precip	40	8	32
lfi	35	5	30
slength	30	0	30
lfshape	45	22	23
umaf_geo	10	0	10
elev	75	68	7
mafic_geo	40	35	5
silic_geo	35	32	3
mix_geo	40	46	-6
sulf_geo	25	46	-21
relief	30	54	-24
lime_geo	40	68	-28

¹ where variable made at least a 5% contribution to prediction gain

<u>3) Map unit accuracy</u>: An accuracy assessment using random samples was not completed for this project, however, the same analysis process (termed an accuracy evaluation) was followed, i.e., a comparison was made between reference field data and classified (modeled) data for the same site (appendix VII). Although this is a biased measure of accuracy because these are the same data used to produce the MAXENT predictive equations, it is a reasonable means of objectively comparing how well map composition reflects field data across different landscapes. It was also useful for evaluating ecotones to improve map unit boundary accuracy among Zones (see discussion above).

Overall accuracy within the study area for 3rd approximation Ecological Zones is 79% (table 10) and 83% for BpS / Nature Serve-Ecological Systems (appendix VII, table 2) based on intersecting 5,842 plots with the final Ecological Zone models / map units. This compares favorably to (or better than) other Ecological Zone modeling within the Appalachians and the Kentucky FLN considering the size and number of Zones modeled, and considerably better than the 2nd approximation Ecological Zone mapping. Floodplains, Shortleaf Pine-Oak, and Spruce-Fir, had the highest accuracy (88-94%) in the 3rd approximation SBR mapping, 7 other types (Pine-Oak Heath, Shortleaf Pine-Oak Heath, Montane Oak Rich, High Elevation Red Oak, Rich Cove, Acidic Cove, and Northern Hardwood Cove exceeded 79% accuracy, the average for all types. Mixed Oak / Rhododendron, Montane Oak Cove, and Dry-Oak / Evergreen Heath had the lowest accuracy (68-69%) of all types and were confused primarily with other types associated with concave landscape positions (Montane Oak Cove or Mixed Oak / Rhododendron vs. Acidic Cove, Rich Cove, Dry-mesic Oak) or with other types associated in adjacent landscapes, e.g., Dry-Oak / Evergreen Heath vs. Pine-Oak Heath (appendix VII). The remaining 7 types had accuracy levels between 73% and 78% (Alluvial Forest, Dry Oak / Deciduous Heath, Montane Oak Slope, Dry-Mesic Oak, Grassy Bald, Heath Bald, and Northern Hardwood Slope).

^{1/} strdist=dstream, sdiff; curve=curve, curvepl, curvepr, tsi; aspect=aspr, aspc, solar; rsp=rsp1, rsp2; rivdist=driver, rivdiff; lfshape=lfm10, lfm30

	3 rd Approx	Cherokee NE	George Was	shington NF	Kentucky	2 nd Approx
Ecological Zone	SBR	North Zone	Appalachian Ridges	Blue Ridge	FLN	SBR
Size of area (acres-rounded)	8,234,470	1,021,600	3,761,700	1,026,200	278,000	5,922,100
			Percent	correct		
Grassy Bald	74	100	-	-	-	30
Heath Bald	74	-	-	-	-	19
Spruce-Fir	89	86	89	-	-	70
N. Hardwood Slope	73	88	86	81	-	23
N. Hardwood Cove	80	71	89	100	-	53
Acidic Cove	81	84	83	90	87	66
Spicebush Cove	-	-	-	71		-
Rich Cove 1/	81	76	82	82	92	51
Alluvial Forest	78	92	67	94	81	56
Floodplain	94	100	78	-		-
High Elevation Red Oak	81	79	86	84	-	75
Montane Oak Rich	82	100	77	68		-
Montane Oak Cove	69	66	79	-	-	43
Montane Oak Slope 2/	75	85	72	80	-	-
Colluvial Forest	-	-	70	-	-	-
Dry-Mesic Oak	74	78	84	90	77	27
Dry-Mesic Calcareous Forest	-	-	81	-	-	-
Dry Oak Evergreen Heath ^{3/}	69	75	66	73	83	27
Dry Oak Deciduous Heath	78	75	65	71	-	-
Mixed Oak / Rhododendron	68	76	-	-	-	36
Shortleaf-Pine Oak 4/	88	85	90	91	80	66
Shortleaf P-O Heath	82	-	-	-	-	58
Pine-Oak Heath (eastside)	-	-	82	-	-	-
Pine-Oak Heath (westside) 5/	82	82	77	83	-	58
Pine-Oak Heath (ridges) 6/	-	-	59	-	79	-
Pine-Oak Shale Woodland	-	-	89	-	-	-
Shale Barren	-	-	83	-	-	-
Alkaline Woodland	-	-	92	-	-	-
Mafic Glade and Barren] -	-	-	91		-
OVERALL	79	81	77	80	82	52
Most fire-adapted group	93	94	97	98	95	83

Table 10: Ecological Zone accuracy across the Appalachian Mountains study areas

¹/ Mesic Forest in Kentucky, ²/ typical Montane_submesic Oak ³/ Chestnut Oak in SBR, ⁴/ Shortleaf Pine-Oak in SBR, ⁵/ typical POH, ⁶/ "Xeric Pine-Oak" in Kentucky.

Ecological Zone	Project Area	All Federal Land	National Park Service	US Forest Service	Nantahala National Forest	Pisgah National Forest
Size (1000s' of acres-rounded)	8,234,475	2,204,370	551,540	1,652,830	532,730	508,280
Reference field plots (total #)	5,842	4,356	539	3,817	1,276	1,562
			Percent correct	t map accuracy		
Grassy Bald	74	74	78	73	-	68
Spruce-Fir	89	89	87	90	-	90
Northern Hardwood (slope)	73	73	67	74	73	69
Northern Hardwood (cove)	80	79	75	81	81	73
Rich Cove	81	82	77	81	86	83
Acidic Cove	81	81	82	81	83	82
Mixed Oak / Rhododendron	68	70	67	70	73	64
Alluvial Forest	78	71	50	71	50	81
Floodplain	94	89	100	88	-	100
High Elevation Red Oak	81	80	82	79	78	87
Montane Oak (rich)	82	0	-	0	-	0
Montane Oak (slope)	75	73	57	75	75	71
Montane Oak (upper cove)	69	66	50	68	62	66
Dry-Mesic Oak	74	70	66	71	73	63
Dry Oak Evergreen Heath	69	67	45	68	74	73
Dry Oak Deciduous Heath	78	73	-	73	83	43
Shortleaf Pine-Oak	88	91	82	92	95	92
SL Pine- Tblmt. Pine Oak Heath	82	82	-	82	-	82
Pine-Oak Heath	82	84	86	83	85	82
Heath Bald	74	79	79	-	-	-
OVERALL accuracy	79	79	77	79	80	79
Accuracy of the most fire-adapted category (below dashed line)	93	93	90	93	92	91

Table 11: Comparison of 3rd approximation SBR Ecological Zone accuracy on Federal lands. ^{1/}

 \sqrt{y} based on re-intersection of field data with modeled map units; numbers in italics are based upon fewer than 7 plots, a dash indicates that no plots were sampled in this area within this type or this type does not occur within this area

4) <u>Ecological Zone location and extent</u>: In general, the SBR model based on MAXENT with ecotone adjustments appears to represent both the location and extent of predicted Ecological Zones observed in the field. Oak-dominated Ecological Zones (orange, gray, bluish green, purple in maps) are predicted on about 45% of the over 8 million acre SBR landscape; (Oak group includes Mixed-Oak Rhododendron). Cove Ecological Zones are predicted on about 30% of the landscape (red and dark blue), and Pine-Oak Ecological Zones 17% (green). The remaining 8% of the landscape includes Alluvial Forests, Northern Hardwood, Floodplain, Spruce-Fir, Heath Bald, and Grassy Bald types, and lakes (cover page, figures 5-6, and table 12). Cove types were somewhat more extensive north of Asheville. Pine-Oak types were more extensive south of Asheville (16% in the north model, 19% in the south model). Within the oak types, Dry-Mesic Oak was over two times more extensive in the south while Montane Oak Slope and Cove (in combination) were nearly twice as extensive in the north. Although Pine-Oak Heath was only slightly more common in the north, Shortleaf Pine-Oak was noticeably more extensive in the south.</u>

Figure 5: Ecological Zones in the North model area

Ecological Zone	Total all	lands	Total Federal lands		Nantahala National	Nantahala & Pisgah National Forests		Map Un Accurac (percent	it y :)	North Model	South Model
						norcont	initial	final	change	ac	res
	acres	percent	acres	percent	acres	percent	model	model		3,944,596	4,288,949
Total	8,234,470	100.0	2,204,370	100.0	1,041,020	100.0	59	79	+20	pero	cent
Grassy Bald	1,740	0.0	1,320	0.1	670	0.1	44	74	+30	0.0%	0.0%
Spruce-Fir	64,260	0.8	47,250	2.1	16,600	1.6	50	89	+39	0.5%	1.0%
Northern Hardwood (slope)	58,280	0.7	32,200	1.5	19,560	1.9	50	73	+23	0.8%	0.6%
Northern Hardwood (cove)	143,950	1.7	71,100	3.2	34,360	3.3	48	80	+32	1.9%	1.6%
Rich Cove	993,640	12.1	328,250	14.9	189,140	18.2	68	81	+13	10.9%	13.1%
Acidic Cove	1,417,800	17.2	386,090	17.5	191,160	18.4	61	81	+20	19.3%	15.3%
Mixed Oak / Rhododendron	273,440	3.3	70,740	3.2	49,780	4.8	62	68	+6	4.4%	2.3%
Alluvial Forest	251,040	3.0	16,610	0.8	2,130	0.2	65	78	+13	4.6%	1.6%
Floodplain	84,300	1.0	3,540	0.2	510	0.0	88	94	+6	0.4%	1.6%
Lakes	62,610	0.8	5,760	0.3	850	0.1				0.4%	1.1%
High Elevation Red Oak	109,120	1.3	63,190	2.9	38,640	3.7	48	81	+33	0.8%	1.8%
Montane Oak (rich)	490	0.0	130	0.0	6	0.0	29	64	+35	0.0%	0.0%
Montane Oak (slope)	840,950	10.2	258,370	11.7	118,670	11.4	67	75	+8	12.4%	8.2%
Montane Oak (upper cove)	975,230	11.8	142,840	6.5	67,470	6.5	68	69	+1	15.2%	8.7%
Dry-Mesic Oak	1,050,860	12.8	262,900	11.9	105,990	10.2	59	74	+15	7.1%	18.0%
Dry Oak Evergreen Heath	336,920	4.1	93,340	4.2	50,150	4.8	57	69	+12	4.5%	3.7%
Dry Oak Deciduous Heath	148,450	1.8	30,330	1.4	9,530	0.9	57	78	+21	1.0%	2.5%
Shortleaf Pine-Oak	891,330	10.8	161,380	7.3	43,770	4.2	76	88	+12	9.0%	12.5%
SL Pine- Tblmt. Pine Oak Heath	980	0.0	660	0.0	680	0.1	0	82	+82	0.0%	0.0%
Pine-Oak Heath	527,140	6.4	226,440	10.3	101,280	9.7	45	82	+37	6.6%	6.2%
Heath Bald	1,960	0.0	1,950	0.1	80	0.0	84	74	-10	0.0%	0.0%

Table 12: Extent of Ecological Zones in the SBR project area and change in map unit accuracy (acres rounded)

The distribution of Ecological Zones in the SBR is strongly tied to elevation, and this is also obvious in the Central Appalachians and Cumberland Plateau. How well the predicted / mapped Zone distribution fits these observations can be assessed by examination of both the proportion of different Zone map units within elevational classes relative to the elevation class size and the proportion of Zone map units within elevational classes relative to an individual Zone's area-wide distribution. This is different than looking at the mean values for environmental variables (table 6) based on the reference plot locations because the entire predicted range of the type is being described. The model clearly shows that elevations greater than 5500' elevation are dominated by just 2 Ecological Zones, Spruce-Fir and Northern Hardwood Slope, with appreciable amounts of Grassy Bald and Northern Hardwood Cove (table 13) and that over 75% of all Spruce-Fir and 75% of all Northern Hardwood Slope across the project area occur above 5000' and 4500' respectively (table 14); which seems to confirm field observations. At elevations less than 2500', Shortleaf Oak, Dry-Mesic Oak, Acidic Cove, and Montane Oak Cove are the dominant predicted types and these have their greatest extent there; again, an observation made in the field. Between 4500 and 5500', High Elevation Red Oak, Northern Hardwood Cove and Slope, and Spruce-Fir are the dominant predicted types. Also not surprising is the wide distribution of Acidic Cove which comprises at least 1% of all elevation classes, and Montane Oak Slope which comprise at least 1% of all elevation classes except those over 6000'. In addition, it is interesting to note that 86% of the total extent of the Rich Cove Zone is between 2000 and 4000' (table 14) and that although there are a greater variety of Zones below 2500' (12 of the 20 Zones make up at least 1% of the landscape), Zone diversity is at a finer scale (more types per area) at elevations greater than 5000' which partly explains the botanical and ecological interest these elevations continue to receive.

Figure 6: Ecological Zones in the South model area

Table 13: Percent of la	ndscape within elevational classes	, e.g. Spruce-fir covers	80% of landscapes >	6 000' in	ı elevati	on.

					Elev	/ation in f	eet					# Flov	%
Ecological Zone	<	1501-	2001-	2501-	3001-	3501-	4001-	4501-	5001-	5501	>	# Elev.	/o land
	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000	6000	Classes	lanu
Grassy Bald									1	3	9	3	0
Heath Bald									1	2	4	3	0
Spruce-Fir							2	12	24	64	80	5	1
Northern Hardwood (slope)						1	6	11	16	14	2	6	1
Northern Hardwood (cove)						4	17	24	23	8	1	6	2
High Elevation Red Oak						1	10	25	29	5		5	1
Montane Oak (rich)					-	-	-					0	0
Montane Oak (slope)	1	1	7	14	21	28	25	10	2	2	3	11	10
Acidic Cove	18	15	19	19	17	18	13	7	3	1		10	17
Montane Oak (upper cove)	17	13	14	13	8	4	2		1	1		9	12
Mixed Oak / Rhododendron	2	4	3	4	4	4	3	2	1			9	3
Dry Oak Evergreen Heath	5	4	3	4	4	5	5	4	1			9	4
Pine-Oak Heath	1	5	9	9	10	8	6	4				8	6
Rich Cove	3	5	9	19	27	22	12					7	12
Dry-Mesic Oak	15	20	18	11	8	4						6	13
Dry Oak Deciduous Heath	3	2	3	1	1							5	2
Shortleaf Pine-Oak	25	23	8	2								4	11
Alluvial Forest	9	3	2	2								4	3
Floodplain	1	2	2									3	1
SL Pine-Oak Heath	-	-										0	0
(a) % of landscape	22	15	19	17	13	8	4	2	1	0.3	0.1		
(b) # of Zones (at least 1%)	12	12	12	11	9	11	11	9	11	9	6]	
(b) /(a) = relative diversity	0.5	0.8	0.6	0.6	0.7	1.4	2.8	4.5	11.0	30.0	60.0	1	

Table 14: Percent of Ecolog	gical Zone within elevation	classes, e.g. 26% of Si	pruce-Fir occurs > 60	00' in elevation.

					Elev	vation in f	eet					elevation range
Ecological Zone	<	1501-	2001-	2501-	3001-	3501-	4001-	4501-	5001-	5501	>	with ≥ 75%
	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000	6000	of type extent
Grassy Bald								1	30	43	26	> 5000
Heath Bald							12	17	32	30	9	4501-6000
Spruce-Fir							13	30	26	26	6	4501-6000
Northern Hardwood (slope)						8	35	31	19	6		4001-5500
Northern Hardwood (cove)					3	20	39	26	11	1		3501-5000
High Elevation Red Oak				4	3	7	30	35	18	1		4001-5500
Montane Oak (rich)			3	8	28	49	13					3001-4000
Montane Oak (slope)	2	1	14	23	26	23	10	2				2501-4000
Acidic Cove	22	13	21	19	12	9	3	1				< 3001
Montane Oak (upper cove)	31	17	22	19	8	3	1					< 3001
Mixed Oak / Rhododendron	11	17	20	22	17	9	3	1				< 3501
Dry Oak Evergreen Heath	26	14	14	17	13	10	5	2				< 3501
Pine-Oak Heath	2	12	27	24	19	10	4	1				1501-3500
Rich Cove	6	6	15	27	29	15	4					2001-4000
Dry-Mesic Oak	26	23	26	14	8	3						< 2501
Dry Oak Deciduous Heath	31	17	32	13	5	2						< 2501
Shortleaf Pine-Oak	50	32	15	4								< 2001
Alluvial Forest	67	14	9	9	2							< 2001
Floodplain	29	28	38	4	1							< 2501
SL Pine-Oak Heath	42	56	2									< 2001

At larger scales (< 1:24,000), the relationship between topography and Ecological Zones is more evident as is the association among Ecological Zones (figures. 7-10). At higher elevations, Zone patterns appear more controlled by elevation, slope, and aspect than by drainage pattern as they seem to be at lower elevations, although slope position and surface shape are important at all elevations. The distribution of Zones is fairly consistent at higher elevations and not apparently controlled by geology except at very fine-scales. The sequence (from ridgeline to midslope) of Spruce-Fir (with imbedded Grassy Balds), Northern Hardwood Slopes (convex surfaces), Northern Hardwood Coves (concave surfaces), High Elevation Red Oak (with imbedded Mixed Oak / Rhododendron), and Montane Oak Slopes is fairly consistent throughout the project area. The span of this sequence depends upon the elevation of individual mountain ridges, those above 5000' in elevation often have this full range of Zones, and those from 4000 to 5000' elevation usually start the upper limits of this sequence with High Elevation Red Oak (figures 7 & 10). At lower elevations, the ridge to midslope sequence may start with Pine-Oak Heath and moves downward to Dry-Mesic Oak or Montane Oak Cove dissected by Acidic Cove (imbedded with Mixed-Oak/ Rhododendron (fig. 8); at the lowest elevation, Shortleaf pine may dominate low ridges above a similar sequence below (fig. 9).

As a way of reference to map unit accuracy, Figure 7 at Middle Ridge on the Pisgah NF, shows 34 reference plots within 15 different Zones – the overall accuracy within this scene is 79% accuracy (the SBR average). Figure 10 at Wayah Bald on the Nantahala NF shows 49 reference plots within 14 different Zones and 78% producer's accuracy; both of these examples are at higher elevations. At lower elevations, the Chimneys view (fig. 8) shows 127 reference plots and 13 different types with 79% map accuracy while the Chattooga River view (fig. 9) shows 20 reference plots and 11 different types with 70% accuracy (below the overall SBR average).

Figure 7: Ecological Zones at Middle Ridge, Pisgah NF

Figure 8: Ecological Zones east of The Chimneys, Pisgah NF

Figure 9: Ecological Zones near the lower Chattooga River, Sumter & Chattahoochee NFs

Figure 10: Ecological Zones around Wayah Bald, Nantahala NF

The 20 different Ecological Zones identified in the SBR study area, arranged from wet to xeric moisture regimes, are cross-walked below (table 13) with Nature Serve Ecological Systems (Nature Serve 2010) and represent the natural plant communities that may have been present during the reference period described in LANDFIRE Biophysical Setting Models (LANDFIRE 2009) for the area. To help in describing the composition of types observed in the field and mapped across the study area, more detailed site and species composition descriptions for Ecological Zones and BpS / Nature Serve Ecological Systems are included in Appendix I, photo examples for some of these types are included in Appendix II. These cross-walks reflect the author's ongoing refinement of Ecological Zone concepts to better fit local landscapes based upon work between 2008 and 2011 evaluating Biophysical Setting (BpS) map units in the Southern Blue Ridge Mountains of North Carolina, South Carolina, Tennessee, and Georgia, and modeling Ecological Zones in the Cumberland Plateau in Kentucky, in North Carolina's South Mountains and Northern Blue Ridge Escarpment, and in the Central Appalachians of Virginia and West Virginia. A comparison of 2nd and 3rd approximation Ecological Zone accuracy and extent within each FLN landscape area is included in appendix X.

Ecological Zone	map	BnS /NatureServe Ecological System	map	
Ecological Zolic	code		code	
Grassy Bald	27	- Southern Appalachian Shruh and Grass Bald (in part)	27	
Heath Bald	30	Southern Appalachian Shi ub and Glass Baid (in part)	27	
Spruce	1	Central and Southern Appalachian Spruce-Fir Forest	1	
Northern Hardwood Slope	2	- Southorn Annalachian Northorn Hardwood	2	
Northern Hardwood Cove	3		Z	
Acidic Cove	4			
Mixed Oak / Rhododendron	29	Southern and Central Appalachian Cove Forest		
Rich Cove	5			
Alluvial Forest	6	Central Interior and Appalachian Riparian Systems	6	
Floodplain	23	Central Interior and Appalachian Floodplain Systems	23	
High Elevation Red Oak	8	Central and Southern Appalachian Montane Oak	8	
Montane Oak Rich	24	- Courthann and Control Annalashian Northann Dad Oals Chartrast Oals		
Montane Oak Cove	28	Southern and Central Appalachian Northern Red Oak-Chestnut Oak		
Montane Oak-Slope	9	(provisional type)		
Dry Mesic Oak	13	Southern Appalachian Oak Forest	13	
Dry Oak Evergreen Heath	10	Alleghany Cumberland Dry Ook Forest & Weedland	10	
Dry Oak Deciduous Heath	11	- Allegheny-cumberiand Dry Oak Forest & Woodland	10	
Shortleaf Pine-Oak	16		10	
Shortleaf Pine-Oak Heath	31	Southern Appalachian Low-Elevation Pine	16	
Pine-Oak Heath	18	Southern Appalachian Montane Pine Forest and Woodland	18	

TADIE 15. CLOSSWAIK DELWEEN ECOLOGICALZONES AND DD37 ECOLOGICAL SYSTEM	Table 13. Crosswalk	between Ecologica	I Zones and BpS	/ Ecological Systems
--	---------------------	-------------------	-----------------	----------------------

Table 14. Extent of BpS / Ecological Systems in the SBR project area

map	PpS / NaturaSarua Ecological Sustam	Total	% of	USFS	% of
code	Bp3 / Natureserve Ecological System	acres	total	acres	total
27	Southern Appalachian Grass and Shrub Bald	3,700	0.0	745	0.1
1	Central and Southern Appalachian Spruce-Fir Forest	64,260	0.8	16,600	1.6
2	Southern Appalachian Northern Hardwood	202,230	2.5	53,920	5.2
4	Southern and Central Appalachian Cove Forest	2,684,870	32.6	430,080	41.3
6	Central Interior and Appalachian Alluvial-Riparian Systems	251,040	3.0	2,130	0.2
23	Central Interior and Appalachian Floodplain Systems	84,300	1.0	510	0.0
98	Reservoirs and Ponds	62,610	0.8	850	0.1
8	Central and Southern Appalachian Montane Oak	109,120	1.3	38,640	3.7
9	Southern and Central Appalachian Red Oak-Chestnut Oak	1,816,670	22.1	186,150	17.9
13	Southern Appalachian Oak Forest	1,050,860	12.8	105,990	10.2
10	Allegheny-Cumberland Dry Oak Forest and Woodland	485,370	5.9	59,680	5.7
16	Southern Appalachian Low-Elevation Pine	892,310	10.8	44,450	4.3
18	Southern Appalachian Montane Pine Forest and Woodlands	527,140	6.4	101,280	9.7
	TOTAL	8,234,475	100.0	1,041,021	100.0

Improving Map Unit Accuracy

The accuracy of the 1st approximation Ecological Zone map is good In comparison to other similar Ecological Zone modeling efforts in the Southeastern U.S. (table 10), but can be improved. Model accuracy is affected by several major factors: 1) plot location accuracy, 2) Ecological Zone identification, 3) DTM accuracy, and 4) modeling methods.

1) Plot location accuracy: Incorrect plot locations from poor GPS readings or inaccurate topographic map interpretations can lead to erroneous data and therefore models that do not reflect reality. Furthermore 'ecotone' samples can and may have contributed to modeling errors in the study area. This reality was confirmed by results of the post-processing procedures used to reduce data noise and produce a cleaner product in 2009 within the VA-WVA FLN. Using just 3 majority filters of the 'raw' model, 52 of the 1,321 reference plots (about 4%), shifted into different Ecological Zone map units; 17 of these moved to incorrect classes and thus reduced the overall accuracy by about 2% points. The majority filter command merely replaces individual 1/40th acre cells in a grid based on the majority of their contiguous neighboring cells, a change that would only occur on the edges or interior of a type. These changes observed in plot accuracy indicate the close proximity of these 'shifted' plots to the narrow moisture-temperature-fertility gradients that occur between many Ecological Zones, i.e. the ecotone which is certainly largest around sample sites near type boundaries. Although difficult to capture in GIS modeling, this variability in environmental conditions over short distances is common in the SBR study area where numerous Ecological Zones may be encountered while traversing along only a 100 meter transect in highly dissected landscapes.

2) Ecological Zone field identification: The identification of reference condition (the Ecological Zone) at individual site locations is of equal or greater importance as plot location accuracy in developing a truer representation of landscapes that may have existed prior to Euro-American settlement. Ecological Zone models are evaluated from a sample of plot locations in a study area and from the interpretation of data collected from these areas that uses existing vegetation and often only remnant site indicator species. Incorrect identification of the Ecological Zone can therefore have a major impact on the outcome of map unit extent and accuracy especially for those zones that are hard to recognize because of past disturbance or because of lack of experience in the area by the observer. It should also be noted that these field identification 'errors' are likely accounted for by the MAXENT statistical procedure that evaluates environmental conditions at multiple plots (often in the hundreds), and therefore the models may better represent Ecological Zones than the field evaluation. This is something to consider when analyzing the accuracy assessment matrix (Appendix VII).

3) DTM accuracy: The accuracy of DTMs used to reflect temperature, moisture, and fertility gradients, especially geologic / lithologic type in the study area, has a significant impact on Ecological Zone map unit accuracy. Lithology in the study area influences soil fertility, (also slope and aspect), thus having a major influence on the distribution of Ecological Zones across the complex background of temperature and moisture regimes described by other DTMs. Although lithologic map units were aggregated into just six distinct groups, there were still differences between these grouped map units across State lines; not only map line differences but also map unit labeling differences. An improvement in map unit accuracy could be possible by correlating lithologic map units among the State-wide maps. Also, geologic map unit resolution is not fine enough to identify rock types at scales that some Ecological Zones occur, such as Montane Oak (rich) that is closely aligned with mafic rocks not often depicted by State-wide geology maps.

4) Modeling methods. The 3rd approximation Ecological Zones are based on merging 20 individual Ecological Zone models into one map based upon the zone having the highest probability of occurrence and numerous adjustments along ecotones. Although this seems to be a reasonable approach, other techniques might be evaluated. For example, choosing a threshold probability value for each type that maximizes the correct plot inclusion and minimizes inclusion of plots representing other types could be used to map the location of individual zones having their greatest probability of occurrence. This coverage could then be merged with the maximum probability model to fill areas where these conditions are not met.

Literature cited:

Bolstad, P. V., Swank, W. and Vose, J. 1998. Predicting Southern Appalachian overstory vegetation with digital terrain data. Landscape Ecology 13:271-283.

Braun-Blanquet, J. 1932. Plant sociology: New York: McGraw-Hill. 439 p. [Translated by G.D. Fuller and H.S. Conard].

DOD - Department of Defense, Camp Lejeune Marine Corp Base, 2006. Integrated Natural Resource Management Plan, Camp Lejeune, North Carolina. <u>www.lejeune.usmc.mil/emd/INRMP/INRMP</u>

ECOMAP. 1993. National hierarchical framework of ecological units. Washington, DC: U.S. Department of Agriculture, Forest Service. 20 pg.

ESRI, 2009. Environmental Systems Research Institute, Inc. Redland CA.

Fels, J. E. 1994. Modeling and mapping potential vegetation using digital terrain data. Ph.D. Dissertation, North Carolina.

Fels, J. E. 1994. Modeling and mapping potential vegetation using digital terrain data. Ph.D. Dissertation, North Carolina State University; Raleigh, North Carolina.

Fleming, Gary P. and Karen D. Patterson. 2010. Natural Communities of Virginia: Ecological Groups and Community Types. Natural Heritage Technical Report 10-11. Virginia Department of Conservation and Recreation, Division of Natural Heritage, Richmond, Virginia. 35 pages.

Frost, C.C. 1996. Presettlement vegetation and natural fire regimes of the Croatan National Forest. North Carolina Department of Agriculture, Plant Conservation Program. 128 pp.

Hack, J.T. 1982. Physiographic divisions and differential uplift in the Piedmont and Blue Ridge. Prf. Pap. 1265 Washington, DC: U.S. department of the Interior, Geological Survey, 49 p.

Hatcher, R.D., Jr. 1972. Developmental model for the Southern Appalachians. Geological Society of America Bulletin. 83: 2735-2760.

Iverson, L. R., M. E. Dale, C. T. Scott, and A. Prasad. 1997. A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U. S. A.). Landscape Ecology 12:331-348.

LANDFIRE. URL: http://www.landfire.gov/NationalProductDescriptions20.php - 43KB - 29 Jan 2009

McNab, W. H. 1991. Predicting forest type in Bent Creek Experimental Forest from topographic variables. In: Coleman, Sandra S.; Neary, Daniel G., comps. Eds. Proceedings of the sixth biennial southern silvicultural research conference; 1990 October 30-Noverber 1: Memphis, TN. Gen. Tech. Rep. SE-70. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. 496-504. (2 vols.)

McNab, W. H. 1993. A topographic index to quantify the effect of mesoscale landform on site productivity. Canadian Journal of Forest Research 23:1100-1107.

McNab, W. Henry; Avers, Peter E., comps. 1994 Ecological subregions of the United States: Section descriptions. Administrative Publication WO-WSA-5. Washington, DC: U.S. Department of Agriculture, Forest Service. 267p.

NatureServe. 2010. NatureServe Explorer online. <u>http://www.natureserve.org</u> NatureServe, 1101 Wilson Boulevard, 15th Floor, Arlington, VA.

NHD. 2011. National Hydrography Dataset. U.S. Geological Survey. http://nhd.usgs.gov./data

Pearson, Scott M, and Dawn M. Dextraze. 2002. Mapping Forest Communities of the Jacob Fork Watershed, South Mountains State Park. Mars Hill College Biology Department, Mars Hill, NC.

Peet, R.K.; Wentworth, T.R.; White. P.S. 1998. A flexible, multipurpose method for recording vegetation composition and structure. Castanea 63(3): 262-274

Phillips, R. J. 2000. Classification and predictive modeling of plant communities in the Gorges State Park and Gamelands, North Carolina. M.S. thesis. North Carolina State University; Raleigh, North Carolina.

Phillips, S.J., M. Dudik, and R.E. Shapire. 2004. A maximum entropy approach to species distribution modeling. Pages 655-662 in Proceedings 21st International Conference of Machine Learning, Banff, Canada. ACM Press, New York.

Phillips, S.J., R.P. Anderson, and R.E. Shapire. 2006. Maximum entropy modeling of species geographic distribution. Ecol. Modeling 190:231-259. Phillips, S.J., R.P. Anderson, and R.E. Shapire. 2006.

Pittillo, J.D.; Hatcher, R.D., Jr.; Boul, S.W. 1998. Introduction to the environment and vegetation of the southern Blue Ridge Province. Castanea. 63(3): 202-216.

Reed, P.B., Jr., 1988. National list of plant species that occur in wetlands. Northeast (Region 1). US Fish Wildl. Serv. Biol. Rep. (88) 26.1.

Schafale, M.P.; Weakley, A.S. 1990. Classification of natural communities of North Carolina. Raleigh, NC: N.C. Department of Environment, Health, and Natural Resources, Division of Parks and Recreation, North Carolina Natural Heritage Program. 325p.

Simon, Steven A.,; Collins, Thomas K.; Kauffman, Gary L.; McNab, W. Henry; Ulrey, Christopher J. 2005. Ecological Zones in the Southern Appalachians: first approximation. Res. Pap. SRS-41, Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 41 p.

Simon, Steven A. 2008. Second Approximation of Ecological Zones in the Southern Appalachian Mountains. The Nature Conservancy, Southern Region. Unpublished report.

Simon, Steven A. 2009. Ecological Zone mapping in the South Mountains and New River Headwaters Landscapes and Evaluation of fire needs across the Southern Blue Ridge Fire Learning Network. The Nature Conservancy, Southern Region. Unpublished report.

Simon, Steven A. 2010a. Ecological Zones in the Kentucky Fire Learning Network Project Area. Nature Conservancy, Kentucky Field Office. Unpublished report.

Simon, Steven A. 2010b. Ecological Zones in the Virginia and West Virginia Fire Learning Network: First Approximate Mapping. Nature Conservancy, Southern Region. Unpublished report.

Simon, Steven A. 2011. Ecological Zones on the George Washington National Forest: 1st Approximation Mapping, Nature Conservancy, Southern Region. Unpublished report.

Story, M., and R. Congalton. 1986. Accuracy assessment: a user's perspective. Photogrammetric Engineering and Remote Sensing, 52, pp. 397-399.

Ulrey, C.J. 1999. Classification of the vegetation of the Southern Appalachians. Report to the U.S. Department of Agriculture Forest Service, Asheville, NC. 88 p.

USDA. Forest Service. 1995. Classification, Mapping, and Inventory of the Chattooga River Watershed. R8-Regional Office, Atlanta, GA., Unpublished report.

USDA, Forest Service, 2002. Croatan National Forest Land and Resource Management Plan, Asheville, North Carolina. www.cs.unca.edu/nfsnc/nepa/croatan_plan/croatan_plan.pdf

USDA, Forest Service, 2004a. Management Indicator Species Habitat and Population Trends, Nantahala and Pisgah National Forests 8/30/2004, National Forests in North Carolina, Asheville, NC. Unpublished report, 815 pgs.

USDA, Forest Service, 2004b. Cherokee National Forest Revised Land and Resource Management Plan, Forest Service Southern Region, Management Bulletin R8-MB 114A. http://www.fs.fed.us/r8/cherokee/planning/final_forest_plan.pdf

USDA, Forest Service, 2005. The Suppression of Hemlock Woolly Adelgid Infestations on the Nantahala and Pisgah National Forests (USDA 2005), Atlanta, GA. http://www.cs.unca.edu/nfsnc/nepa/hwa_dn.pdf

USDA, Forest Service, 2005. Amending the Nantahala and Pisgah Land and Resources Management Plan – Changing the List of Management Indicator Species, the Species Groups to be Monitored, and Associated Changes to Forest Plan Directions, Asheville, North Carolina. <u>www.cs.unca.edu/nfsnc/</u> nepa/mis_decision.pdf

USDA, Forest Service, 2006. Southern Region Existing Vegetation Mapping Pilot Test Report. Atlanta, Georgia, unpublished report.

USDA, Forest Service, 2009. Uwharrie National Forest Land and Resource Management Plan Revision, Asheville, North Carolina. www.cs.unca.edu/nfsnc/uwharrie_plan/

Wilds, S. P. 1997. Gradient analysis of the distribution of a fungal disease of *Cornus florida* in the Southern Appalachians, Tennessee. Journal of Vegetation Science 8:811-818.

Whittaker, R.H. 1956. Vegetation of the Great Smoky Mountains. Ecological Monographs. 26: 1-80.

Appendix I: Ecological Zone - BpS / Nature Serve Ecological Systems cross-walk and descriptions

Ecological Zones were cross-walked with LANDFIRE Biophysical Settings (BpS) / Nature Serve Ecological Systems by comparing field observations with descriptions of indicator species and species with high constancy or abundance identified in the "Ecological Zones in the Southern Appalachians: First Approximation" (Simon et. al. 2005), from descriptions of dominant species and site relationships in Nature Serve Ecological Systems (2010), and from LANDFIRE BpS model descriptions (LANDFIRE, 2009). The following was extracted from these sources and from Schafale and Weakley (1990) and Fleming and Patterson (2010). Additional Ecological Zone site or vegetation indicators not included in the 1st approximation NC but identified from local knowledge within the Appalachian study areas are indicated by *italics*. Shortleaf Pine-Oak Heath is **not** included in these descriptions; it is considered the lowest elevational extent of Pine-Oak Heath that occupies narrow ridges within the Shortleaf Pine-Oak Ecological zone and therefore shares compositional and structural characteristics between these two types.

In general, it was not difficult to find agreement (to cross-walk) between BpS, which use Nature Serve Ecological Systems to name map units, and Ecological Zones (that may break an environmental gradient at different points), except for oak-dominated types. Although 'fire adaptation' was not considered in the Ecological Zone breaks, this disturbance component is nonetheless an important factor that can help define the limits of plant community distribution under historic disturbance regimes. Additional information that was used to develop and evaluate the cross-walk included the confusion, i.e., commission and omission errors, among oak-dominated types indicated in the accuracy evaluation matrix (Appendix VII), and the landscape distribution of Ecological Zones compared to the distribution of LANDFIRE BpS map units in the study area.

Grassy Balds and Heath Balds Ecological Zones

This zone was included in the 2nd approximation of Ecological Zones in the Southern Appalachians and represents sites at the highest elevations within the SBR study area that do not support forested plant communities. Grassy balds occur on the domes of high mountains, usually on gentle slopes and are dominated by herbaceous species with patches of shrubs and small trees. The most characteristic dominant species is mountain oak grass. Other frequent dominants are three-tooth cinquefoil, Canada cinquefoil, white-edge sedge, brown sedge, Pennsylvania sedge, perennial bentgrass, Appalachian haircap moss, and wavy hairgrass (Schafale and Weakley 1990).

BpS / Nature Serve -- Southern Appalachian Shrub and Grass Bald: This ecological system consists of dense herbaceous and shrubland communities in the highest elevational zone of the southern Appalachians, generally above 1524m (5000ft) but occasionally to 1220m (4000ft), and at slightly lower elevations at its northern limit in VA and WV, and in the Cumberland Mountains along the VA-KY border. Vegetation consists either of dense shrub-dominated areas (heath balds) or dense herbaceous cover dominated by grasses or sedges (grassy balds). The combination of high elevation, non-wetland sites and dense herbaceous or shrub vegetation without appreciable rock outcrop conceptually distinguishes this system from all others in the southern Appalachians. However, widespread areas of degraded spruce-fir with grass and shrub cover and the invasion of grassy balds by trees blur the distinction somewhat.

Spruce-Fir Ecological Zone

This zone includes spruce, fir, spruce-fir, and yellow birch-spruce forests and high elevation successional tree, shrub, and sedge communities. This type is the dominant zone at the highest elevations in the Southern Blue Ridge Mountains. Indicator species and species with high constancy or abundance include: Fraser fir, red spruce, mountain ash, yellow birch, mountain woodfern, Pennsylvania sedge, mountain woodsorrel, hobblebush, fire cherry, *clubmoss*, various bryophytes, and Catawba rhododendron.

BpS / Nature Serve -- <u>Central and Southern Appalachian Spruce-Fir Forest</u>: This system consists of forests in the highest elevation zone of the Blue Ridge and parts of the Central Appalachians generally dominated by red spruce, Fraser fir, or by a mixture of spruce and fir. Elevation and orographic effects make the climate cool and wet, with heavy moisture input from fog as well as high rainfall. Understory species are variable and include rhododendron, mountain woodsorrel, hobblebush, Pennsylvania sedge, mountain ash, and various mosses.

Northern Hardwood Ecological Zones (slope and cove)

This type was split into two zones -- Northern Hardwood Slopes, and Northern Hardwood Coves in the second approximation (Simon 2008), and in the VA_WVA FLN study area. <u>Northern Hardwood Slopes</u> include beech gaps, and Northern Hardwood plant communities occurring on upper convex slopes and ridges. Indicator species include: American beech, Pennsylvania sedge, northern red oak, *eastern hemlock, striped maple, sweet birch, hay-scented fern*, and Allegheny service berry. <u>Northern Hardwood Coves</u> include high elevation boulder fields, and Northern Hardwood plant communities that occur on toeslopes, and coves, i.e., broad to narrow concave drainages at higher elevations. In the Appalachians, this type can be viewed as the highest elevation extension of Rich Coves. Indicator species and species with high constancy or abundance include yellow birch, sugar maple, black cherry, northern red oak, mountain holly, *Basswood*, Canadian woodnettle, *black cohosh*, *blue cohosh*, and ramps; the lack of Tulip Poplar and Ginseng appear to be good indicators of where this type 'transitions' to Rich Coves.

BpS / Nature Serve -- Southern Appalachian Northern Hardwood: High elevation sites in the Southern Appalachians. Generally occurring on all topographic positions above 1372m (4500ft) in the southern extent of the range, elevations may be considerably lower in the northern part of the range. At elevations greater than 1676m (5500ft) (975m in W. Virginia), spruce-fir forests become the predominant type, though the range of this sub-type is extremely limited within this zone. Soils are highly variable, ranging from deep mineral soils to well-developed boulderfields. Soils are most often rocky and acidic, with low base saturation. A thick organic soil layer is frequently present. Overall hydrology is mesic, ranging from wet in bogs, seeps, and the most protected sites to drymesic on some exposed upper slopes and ridges. Mesic conditions are maintained by high annual rainfall, frequent fog deposition, low temperatures, and heavy shading.

Acidic Cove Ecological Zone

This zone includes hemlock and mixed hardwood-conifer forests typically dominated by an evergreen understory occurring in narrow coves (ravines) and often extending up on adjacent protected, north-facing slopes. Indicator species and species with high constancy or abundance include great rhododendron, eastern hemlock, black birch, heartleaf species, partridgeberry, mountain doghobble, eastern white pine, yellow-poplar, common greenbrier, chestnut oak, and red maple.

 BpS / Nature Serve – <u>Southern and Central Appalachian Cove Forest</u>: This system consists of mesophytic hardwood or hemlockhardwood forests of sheltered topographic positions. Examples are generally found on concave slopes that promote moist conditions. The system includes a mosaic of acidic and "rich" coves that may be distinguished by individual plant communities based on perceived difference in soil fertility and species richness. Both acidic and rich coves may occur in the same site, with the acidic coves potentially creeping out of the draw-up to at least midslope on well-protected north-facing slopes. Characteristic species in the canopy include yellow buckeye, sugar maple, white ash, American basswood, tulip poplar, silverbell, eastern hemlock, American beech, and magnolias. Understories can include high diversity and density in the herbaceous layer or a sparse herbaceous layer over-topped by dense rhododendron and / or dog hobble.

Mixed Oak / Rhododendron Ecological Zone

This zone was not included in the 1st approximation NC but was included in the 2nd approximation and labeled "Mixed Oak / Heath". It is confined to steep, mostly north-facing mid to upper slopes adjacent to the Acidic Cove Ecological Zone and therefore can be considered a refinement of this type, however, the overstory is dominated by oaks. Indicator species and species with high abundance include great rhododendron, northern red oak, chestnut oak, black birch, and tulip poplar.

BpS / Nature Serve – <u>Southern and Central Appalachian Cove Forest</u>: See description above.

Rich Cove Ecological Zone

This zone includes mixed mesophytic forests typically dominated by a diverse herbaceous understory and occurs in broader coves and on adjacent protected slopes (mostly north to north-east facing). Indicator species and species with high constancy or abundance include black cohosh, American ginseng, blue cohosh, mandarin, bloodroot, northern maidenhair fern, Dutchman's pipe, rattlesnake fern, mountain sweet-cicely, Appalachian basswood, yellow buckeye, white ash, yellow-poplar, *wood nettle, cucumber magnolia*, and northern red oak.

 BpS / Nature Serve – <u>Southern and Central Appalachian Cove Forest</u>: This system consists of mesophytic hardwood or hemlockhardwood forests of sheltered topographic positions. Examples are generally found on concave slopes that promote moist conditions. The system includes a mosaic of acidic and "rich" coves that may be distinguished by individual plant communities based on perceived difference in soil fertility and species richness. Both acidic and rich coves may occur in the same site, with the acidic coves potentially creeping out of the draw-up to at least midslope on well-protected north-facing slopes. Characteristic species in the canopy include yellow buckeye, sugar maple, white ash, American basswood, tulip poplar, silverbell, eastern hemlock, American beech, and magnolias. Understories can include high diversity and density in the herbaceous layer or a sparse herbaceous layer over-topped by dense rhododendron and / or dog hobble.

Alluvial Forest Ecological Zone (Riparian_Alluvial Forest & Riparian_Streamside)

This zone was not included in the 1st approximation NC. Riparian_Alluvial Forest was added in the 2nd approximation and labeled "Alluvial Forest". These zones characterize small floodplains that support alluvial forests and imbedded riparian areas and overlap with smaller riparian areas associated with sites adjacent to streams that support Acidic Cove or Rich Cove Ecological Zones. Characteristic trees in this zone include sycamore, river birch, silver maple, tulip poplar, and box elder. The understory is highly variable, depending upon the time since the last flooding event but common species may include paw-paw, spicebush, and switchgrass.

 BpS /Nature Serve – <u>Central Appalachian Stream and Riparian</u>: This riparian system occurs over a wide range of elevations and develops on floodplains and shores along river channels that lack a broad flat floodplain due to steeper sideslopes, higher gradient, or both. It may include communities influenced by flooding, erosion, or groundwater seepage. The vegetation if often a mosaic of forest, woodland, shrubland, and herbaceous communities. Common trees include river birch, sycamore, and box elder. Open, flood-scoured rivershore prairies feature switchgrass, big bluestem, and twisted sedge is typical of wetter areas near the channel.

The fluvial features (river terraces, oxbows, alluvial flats, point bars, and streamside levees) typical of (large) river floodplains occur less frequently and on a smaller scale along these small streams. Fine-scale alluvial floodplain features are abundant. In pre-European settlement forests, community diversity in these streamside systems was much more complex than in the modified landscapes of today. Fire, beaver activity, and flooding of varied intensity and frequency created a mosaic whose elements included canebrake, grass and young birch / sycamore beds on reworked gravel or sand bars, beaver ponds, and grass-sedge meadows in abandoned beaver clearings, as well as the streamside zones and mixed hardwood and/or pine forests that make up more than 95% of the cover that exists today. These systems have little to no floodplain development (i.e., floodplains, if present, are not differentiated into levees, ridges, terraces, and abandoned channel segments) and are typically higher gradient than larger floodplains, experiencing periodic, strong flooding of short duration (Nature Serve 2010).

Large Floodplain Ecological Zone

This zone was first included in the VA_WVA FLN and George Washington NF study area. It relies entirely on descriptions from Nature Serve. Most all of the Floodplain Ecological Zone has been highly altered, not in USFS ownership or other conservation tracts, likely farmed by Native Americans, and therefore difficult to characterize.

BpS / Nature Serve – <u>Central Appalachian River Floodplain</u>: This system encompasses floodplains of medium to large rivers and can
include a complex of wetland and upland vegetation on deep alluvial deposits and scoured vegetation on depositional bars and on
bedrock where rivers cut through resistant geology. This complex includes floodplain forests in which silver maple, cottonwood,
and sycamore are characteristic, as well as herbaceous sloughs, shrub wetlands, riverside prairies and woodlands. Most areas are
underwater each spring; microtopography determines how long the various habitats are inundated. Depositional and erosional
features may both be present depending on the particular floodplain.

High Elevation Red Oak Ecological Zone

This zone includes forests dominated by northern red oak on exposed slopes and ridges at higher elevations. Site extremity and exposure results in stunted and often windswept tree form, however, there is a broad transition between this extreme and the more common Montane Oak-Hickory (slope) Ecological Zone; the break between these two types is complicated primarily by past management practices, especially timber harvest intensity and ground disturbance. Indicator species and species with high constancy or abundance include: northern red oak, American chestnut, flame azalea, whorled yellow loosestrife, Pennsylvania sedge, speckled wood-lily, highbush blueberry, mountain laurel, *hayscented fern, witchhazel, striped maple*, and New York fern.

Bps / Nature Serve -- <u>Central and Southern Appalachian Montane Oak Forest</u>: This generally oak-dominated system is found in the central and southern Appalachian Mountains. These high-elevation deciduous forests occur on exposed sites, including ridgecrests and south- to west-facing slopes. In most associations attributed to this system, the soils are thin, weathered, nutrient-poor, low in organic matter, and acidic. The forests are dominated by oaks, most commonly red oak and white oak with the individuals often stunted or wind-flagged. American chestnut sprouts are common. Characteristic shrubs include mountain holly and early azalea.

Montane Oak-Hickory (rich, slope, cove) Ecological Zones

These zones includes mesic to submesic mixed-oak and oak-hickory forests that occur along broad mid- to higher elevation ridges and smooth to concave slopes below the highest and more narrow ridges where this zone forms a gradual transition to the High Elevation Red Oak and Northern Hardwood zones. It also includes drainage headlands at mid to higher elevations that merge with Rich Coves and Northern Hardwood Cove Ecological Zones, lower to mid elevations in often narrow sub-mesic coves that merge with Dry-Mesic Ecological Zones, and more exposed slopes in very close proximity with High Elevation Red Oak Ecological Zones. Forests in this zone are often floristically diverse. Indicator species and species with high constancy or abundance include: northern red oak, white oak, flowering dogwood, tulip poplar, Canada richweed, mockernut hickory, New York fern, pignut hickory, white ash, chestnut oak, *magnolias, sweet birch, striped maple,* and *witchhazel*

--- Montane Oak-Hickory (Rich): Dominance by northern red oak characterizes these forests. Community types in this zone are known from the southern part of the Central Appalachians, extending into the extreme northern portions of the Southern Blue Ridge, Southern Ridge and Valley, and Cumberland Mountains. Favorable sites are upper slopes and ridge crests with deep, base-rich soils weathered from mafic and calcareous parent material. The characteristic expression of this community is that of an oak or oak-hickory forest with an herb layer that resembles that of a rich cove forest. Northern red oak is the most constant member of the overstory but usually shares dominance with red hickory, shagbark hickory, and white ash. The shrub layer is typically sparse. Most stands have a lush and generally diverse herb layer; black cohosh and eastern waterleaf are the most characteristic herb species. At higher elevations, where the type is transitional to northern red oak forests, eastern hayscented fern often dominates the herb layer in large clones (Fleming and Patterson, 2010).

---- Montane Oak-Hickory (Cove and Slope): These zones more closely fit the Mesic Oak-Hickory type described in the NC 1st approximation. They are either confined to broad coves and concave lower slopes (cove type) or to the mid-to higher elevation upper slopes and form a broad transition with more exposed, wind-swept types that support High Elevation Red Oak. Indicator species and species with high abundance include northern red oak, tulip poplar, chestnut oak, and New York fern.

- BpS / Nature Serve -- <u>Central and Southern Appalachian Montane Oak Forest</u>: This generally oak-dominated system is found in the central and southern Appalachian Mountains. These high-elevation deciduous forests occur on exposed sites, including ridgecrests and south- to west-facing slopes. In most associations attributed to this system, the soils are thin, weathered, nutrient-poor, low in organic matter, and acidic. The forests are dominated by oaks, most commonly red oak and white oak with the individuals often stunted or wind-flagged. American chestnut sprouts are common. Characteristic shrubs include mountain holly and early azalea.
 Based on the Nature Serve description for this type, this is an uncomfortable fit in the Montane Oak-Hickory (Slope) Ecological Zone unless a broader Nature Serve concept is assumed that includes more sub-mesic forests. The majority of this Ecological Zone coincides with the LANDFIRE BpS Montane Oak Ecological Systems map units within the CNF study area. This may indicate that the LANDFIRE modelers were working with a broader concept (more similar to Ecological Zones) than what is being described in this Nature Serve type.
- BpS / Nature Serve <u>Southern and Central Appalachian Northern Red Oak-Chestnut Oak Forest</u> (provisional type used for the TN Restoration Initiative): This system consists of mixed oak forests on predominantly submesic slopes at elevations from 600 to 1200 m (2000-4000 feet) in the northern part of the Southern Appalachians. It occurs on various topographic positions from lower to upper slopes and crests, in deep, infertile soils. Mature stands have a well-developed canopy of trees 30 m or more tall. Northern Red oak is the leading overstory dominant, with only slightly higher density and basal area than Chestnut oak. Most stands are mixed, although either species can dominate small areas. One or both of the magnolias, Cucumber tree or Fraser's magnolia, are

usually important in the overstory or understory. Minor canopy associates vary and can include White oak, Sweet birch, Red maple, hickories, American beech, Eastern hemlock, and Tulip poplar. Most of the preceding species may be present in the understory, along with Striped maple, Sourwood, White pine, Downy serviceberry, and Allegheny serviceberry, and sprouts of American chestnut. Striped maple is consistently the most important small tree / shrub. Other shrubs that are less constant but sometimes important include Witch-hazel, Great rhododendron, Mountain holly, Maple-leaved viburnum, and Hillside blueberry. The herb layer is often patchy to sparse, with Indian cucumber-root, Galax, Squaw root, New York fern, and Hay-scented fern. In the higher part of the elevational range, however, the latter two ferns may greatly dominate the herb layer and cover more substantial areas (Fleming and Patterson, 2010).

Dry-Mesic Oak Ecological Zone

This zone was included in the Dry and Dry-Mesic Oak-Hickory type in the 1st approximation NC but separated into its components -- Dry Oak and Dry-Mesic Oak in the 2nd approximation both in the KY FLN (Simon 2009) and in the VA_WVA FLN study areas (Simon 2010). This zone is very similar to the Montane Oak-Hickory zone but occurs at lower elevations. It includes dry-mesic, mixed-oak forests that occur along broad lower to mid elevation ridges and smooth to concave slopes and lower elevation drainage headlands, and often narrow, drier coves. Indicator species and species with high constancy or abundance include: *white oak, black oak,* scarlet oak, flowering dogwood, sourwood, low bush blueberry, and huckleberries.

BpS / Nature Serve -- <u>Southern Appalachian Oak Forest</u>: This system consists of predominantly dry-mesic (to dry) forests occurring
on open and exposed topography at lower to mid elevations. Characteristic species include chestnut oak, white oak, red oak, black
oak, scarlet oak, with varying amounts of hickories, blackgum, and red maple. Some areas (usually on drier sites) now have dense
evergreen ericaceous shrub layers. Northward this system grades into Northeastern Interior Dry-Mesic Oak Forest type.

Dry Oak Heath Ecological Zones (evergreen and deciduous heath types)

This zone, called Chestnut Oak Heath in the 1st approximation NC, includes xeric to dry mixed-oak forests typically dominated by an ericaceous (evergreen or deciduous) understory and represents the driest zone where oaks are the dominant species. In general, in the SBR study area, the Dry Oak/deciduous heath zone is more transitional to the Dry-Mesic Oak Ecological Zone and the Dry Oak/evergreen heath zone is more transitional to the Dry-Mesic Oak Ecological Zone and the Dry Oak/evergreen heath zone is more transitional to the Pine-Oak Heath Ecological Zone, however, and in VA varies considerably according to slope position (and the predominantly east or west-facing side of major ridges). Further work is needed to differentiate these two zones to separate what is truly an environmental influence and what may be an influence of current fire return interval. Indicator species and species with high constancy or abundance include: chestnut oak, *scarlet oak*, northern red oak, mountain laurel (in the evergreen heath type), *black huckleberry* & *hillside blueberry* (in the deciduous type), red maple, great rhododendron, and sourwood.

 BpS / Nature Serve -- <u>Allegheny-Cumberland Dry Oak Forest and Woodland</u>: These forests were typically dominated by White oak, Black oak, Chestnut oak, and Scarlet oak with lesser amounts of Red maple, Pignut hickory, and Mockernut Hickory. These occur in a variety of situations, most likely on nutrient-poor or acidic soils and, to a much lesser extent, on circumneutral soils. American chestnut was once dominant or codominant in many of these forests and sprouts of American chestnut can often be found where it was formerly a common tree. Small inclusions of Shortleaf pine and/or Virginia Pine may occur, particularly adjacent to escarpments or following fire. In the absence of fire, White pine may invade some stands (Nature Serve 2010). Today, subcanopies and shrub layers are usually well-developed. Some areas (usually on drier sites) now have dense evergreen ericaceous shrub layers of mountain laurel, fetterbush, or on more mesic sites rhododendron. Other areas have more open conditions.

Shortleaf Oak- Pine Ecological Zone

This zone includes dry to dry-mesic pine-oak forests dominated by shortleaf pine and/or pitch pine that occur at lower elevations on exposed broad ridges and sideslopes. Indicator species and species with high constancy or abundance include: shortleaf pine, *pitch pine*, sourwood, sand hickory, scarlet oak, southern red oak, post oak, hillside blueberry, American holly, featherbells, *black huckleberry*, and spring iris.

BpS / Nature Serve -- <u>Southern Appalachian Low-Elevation Pine</u>: This system consists of shortleaf pine- and Virginia pine-dominated forests in the lower elevation Southern Appalachians and adjacent Piedmont and Cumberland Plateau. Examples can occur on a variety of topographic and landscape positions, including ridgetops, upper and midslopes, as well as low elevation mountain valleys in the Southern Appalachians. Under current conditions, stands are dominated by shortleaf pine and Virginia pine. Pitch pine may sometimes be present and hardwoods are sometimes abundant, especially dry-site oaks such as southern red oak, *post oak*, *blackjack oak*, chestnut oak, scarlet oak, but also pignut hickory, red maple, and others. The shrub layer may be well-developed, with hillside blueberry, black huckleberry, or other acid-tolerant species most characteristic. Herbs are usually sparse but may include narrowleaf silkgrass and goat's rue.

Pine-Oak Heath Ecological Zone

This zone was included in the Xeric Pine-Oak Heath-Oak Heath type in the 1st approximation NC but separated into three pine-oak heath types in the VA_WVA FLN and GW study areas. This differentiation was not made in the SBR study area. Indicator species and species with high constancy or abundance in all three types include: Table Mountain pine, scarlet oak, chestnut oak, pitch pine, black huckleberry, mountain laurel, hillside blueberry, *bear oak (occasionally in the South Mts.)*, and wintergreen.

 Bps / Nature Serve – <u>Southern Appalachian Montane Pine Forest</u>: This system consists of predominantly evergreen woodland (or more rarely forests) occupying very exposed, convex, often rocky south- and west-facing slopes, ridge spurs, crests, and cliff-tops. Most examples are dominated by Table Mountain pine, often with Pitch pine and / or Virginia pine and occasionally Carolina hemlock. Based on the component Associations, understories commonly include mountain laurel, black huckleberry, and hillside blueberry. Appendix II: photos of plant communities in selected Ecological Zones

Shortleaf Pine-Oak (Apple Pie Mtn., Chattahoochie NF -- 1,780' elevation)

Pine-Oak Heath (Yellow Springs Mountain between Rocky Top and Rocky Top Gap, TN -- 2,200' elevation)

Dry Oak / Evergreen Heath (Ridge and Valley, VA – 3,560' elevation)

Dry Oak / Deciduous Heath (Meadow Ck. Mts., head of South fork, Yellow Spring Branch, TN - Elev. 1,940)

Dry-Mesic Oak (mesic end) (Base of Delaney Mountain, Kettlefoot Wildlife Mgmt. Area, TN – 2,320' elevation)

Montane Oak Cove (High Peak, South Mts. NC – 2,500' elevation)

Montane Oak Slope (north of Meadow Ck. Mt., GW National Forest, WVA – 3,200' elevation)

Montane Oak Slope / transition to Rich Cove (Holston Mountain, Red Eye Ridge, TN – 3,590' elevation)

Montane Oak Rich (northeast of Three Ridges Overlook, Blue Ridge Mts., VA – 3,060' elevation)

High Elevation Red Oak (Shenandoah Mt., VA, north or Middle Ridge – 3,700' elevation)

Appendix III: Methods used in developing Digital Terrain Models (DTMS)

The following DTMs were developed to characterize broad to mid-scale terrain, climate, geology, and solar radiation influences that control temperature, moisture, fertility, and solar inputs on landscapes in the Southern Blue Ridge study area. These environmental factors affect the distribution of Ecological Zones and their component plant communities in different landscapes. They were used to develop site specific probability values for each Ecological Zone based upon their correlation to reference field sample locations for each type. All processing of 2nd derivative grids (slope, aspect, etc.) used a 20 ft. DEM except Valley position, Relief, and Solar Radiation, which were evaluated with 90 ft. grid size. For the entire SBR study area, all DTMS were processed using the NAD 1983 StatePlane North Carolina FIPS 4100 Feet coordinate system.

1-2) aspect (raw and transformed)

Aspect is a measure of aspect at each cell location derived from the elevation DEM. The following steps were performed to produce aspect:

- a. GRID function ASPECT from the DEM filled for sinks (elev_fill). = aspectraw
- b. Convert degrees to radians (1 degrees = 0.0174532925 radian), in raster calculator: (ASPECT * 0.017432925). This is done because cosine measurements for a continuous aspect variable are derived from radians and not degrees.
- c. Calculate cosine using ARC TOOLBOX Spatial Analyst Tools, Math, Trigometric, Cos. Value varies from -1 to 1 = aspectrans

3) <u>curve</u>

The curvature of a surface at each cell center in a 3x3 neighborhood derived from the DEM: used GRID curvature function. NOTE: if the DEM used has z units (height) in feet while the x,y units are in meters, then a z-factor of 0.3048 (1 ft = 0.3048 meters) must be used and is part of the ESRI tools options for calculation of curvature. This was not necessary for the SBR study area because x,y, and z units were all in feet.

4) <u>curveplan</u>

The curvature of a surface in a 3x3 neighborhood perpendicular to the slope direction derived from the DEM: GRID curvature function with {out_plan_curve} - an optional output grid referred to as the planiform curvature.

5) <u>curvepro</u>

The curvature of surface in a 3x3 neighborhood in the direction of slope derived from the DEM: GRID curvature function with {out_profile_curve} - an optional output grid showing the rate of change of slope for each cell.

6) elevation (feet)

Elevation for the North Carolina portion of the study area was extracted from digital elevation models (DEMs) available at: <u>http://www.ncdot.org/it/gis/</u>. These are 20 ft resolution, 16 bit unsigned integer, grids with a NAD_1983_Stateplane_North_Carolina_FIPS_3200_feet projection, and D_North_American_1983 datum. The following process was used to build the elevation DTM for the study area:

a) Download and mosaic DEMS for the following NC counties: Allegheny, Ashe, Avery, Buncombe, Burke, Caldwell, Cherokee, Clay, Cleveland, Graham, Haywood, Henderson, Jackson, Macon, Madison, Mitchell, McDowell, Polk, Rutherfordton, Surry, Swain, Transylvania, Watauga, Wilkes, Yancey.

b) Project DEM from the TN study to NAD_1983_Stateplane_North_Carolina (acquired from the National Map Seamless Server), resample, using cubic convolution to 20 ft., and mosaic with the NC DEM.

c) Use the National Map Seamless Server http://sea.jess/isgs/gpv/website/seamless/viewer.htm to download 1/3" NED DEM segments for the remainder of the study area in TN, SC, and GA, mosaic these, project to NAD_1983_Stateplane_ North Carolina, change z values to feet (DEM *3.28084), convert to integer, resample using cubic convolution to 20 ft., and mosaic with the NC TN DEM above. Label as elev20ft.

e) Resample to 30 feet, and derive other DTMS from these coverages.

7-12) Distance to geology type

Combine state geology coverages from Tennessee, Georgia, South Carolina, North Carolina, and finer resolution Hatcher mapping and quad mapping in North Carolina. Clip to an approximately 9 million acre area. The following steps were used to create the final DTMs.

1. Add item "group" and use Peper et.al (2001), Appendix 2: 'Table of numerical lithogeochemical codes and original geologic map symbols' to match geologic map symbols to their appropriate lithogeochemical code and populate the "group" item. The following group codes were used:

1 = CARBONATE-BEARING ROCKS

- 2 = MAFIC SILICATE ROCKS
- 3 = SILICICLASTIC ROCKS
- 4 = SULFIDIC ROCKS

2.

- 6 = MIXED SILICICLASTIC -MAFIC ROCKS; 7 = ULTRAMAFIC ROCKS
- Create 6 separate grids for each of the lithogeochemical groups.
- 3. Calculate distance (Euclidean) to each of the grids to help 'smooth' the differences in scales and mapping resolution.
- 4. Document geology groupings (Appendix VIII).
13-14) Landform10 and Landform 30

These two metrics estimate landform surface shape within a 10x10 and 30x30 pixel neighborhood. It is used to characterize narrow and broader ridges observed in the study area that may differentiate between High-Elevation Red Oak Forests seen on more narrow ridges from Montane Oak (rich type) seen on slightly broader ridges, and to better characterize the broad landforms at lower elevations that may support Low Elevation Pine. They are calculated by averaging the profile curvature within a moving 10x10 and 30x30 pixel, circular window.

c:\tn\dtms\lform10 = focalmean (c:\tn\dtms\curvepr, circle, 10) c:\tn\dtms\lform30 = focalmean (c:\tn\dtms\curvepr, circle, 30)

<u>15) lfi</u>

LFI (landform index) is an index of landform shape (site protection) and macro-scale landform derived from the DEM. Larger number = more concave shape, more protected landform. From: *McNab, W.H. 1996. Classification of local- and landscape-scale ecological types in the Southern Appalachian Mountains. Environmental Monitoring and Assessment 39:215-229.* The software TopoMetrix is required to calculate LFI. The calculation of LFI is data intensive and requires very large RAM, and caching capability and therefore will not perform except on rather small DEMs.

Processing Ifi from topometrix requires the following steps:

- a) clip DEM to reasonable-sized area using 12-digit HUC boundaries (from USGS national coverage) ... this ranges from 1 to 4 HUCS
- b) convert the clipped elevation to .asc file
- c) run lfi in topometrix and save as .asc file
- d) in ArcMap, convert .asc grid TO floating point grid
- e) define projection (projections get dropped between steps 2 and 4)
- f) set null for all grid values < -100 (outside poly boundary)
- g) mosaic these grids together When watersheds are used as clip areas there is no overlapping area, however, the boundary areas may show some "nodata" that need to be filled; use the typical method to accomplish this, i.e., fill null values with the average values based upon the adjacent grid cells with values. If clip areas are user defined then use BLEND (the output cell value of the overlapping areas will be a blend of values that overlap; this blend value relies on an algorithm that is weight based and dependent on the distance from the pixel to the edge within the overlapping areas).
- h) multiply this grid by 0.001 because raw topometrix values do not match McNab definition of LFI values.
- i) Some new areas have values above 10 (just a very few).... Set areas > 1.4 to null
 - f: 3^{rd}_approx f: 3^{rd}_approx f: 3^{rd}_approx f: 3^{rd}_approx f: 3^{rd}_approx f: 3^{rd}_approx fill in all null values

 $f:\lambda_{3}^{rd}$ approx\ficalc\temp1 = con(isnull($f:\lambda_{3}^{rd}$ approx\ficalc\merge_a), focalmean ($f:\lambda_{3}^{rd}$ approx\ficalc\merge_a, rectangle, 3, 3), $f:\lambda_{3}^{rd}$ approx\ficalc\merge_a)

 $f:\^{3^{rd}}_{approx} = con(isnull(f:\^{3^{rd}}_{approx}), ficalc\temp1), focalmean (f:\^{3^{rd}}_{approx}), f:\^{3^{rd}}_{approx})$

done 10 times, then 5 times 10x10

- j) Mosaic with North Escarpment; fill null values
- k) Resample to 30 ft

16) Average Precipitation

Average precipitation in inches. Based on average annual precipitation from 1971-2000. Distribution of the point measurements to a spatial grid was accomplished using the PRISM model, developed and applied by Chris Daly of the PRISM (Parameter-elevation Regressions on Independent Slopes Model) Climate Group at Oregon State University. There are many methods of interpolating climate from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in climate that occur in mountainous regions i.e., (orographic effects are included in the PRISM model). Point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. For example, the precipitation data were distributed at a resolution of approximately 4km. Therefore, point precipitation can be estimated at a spatial precision no better than 2km.

Data was downloaded from: <u>ftp://Prism.oregonstate.edu/pub/Prism/Maps/precipitation/total/Regional/</u>. Files were converted from shapefile to grid after clipping to the study area boundary. Average precipitation ranges from 39" to 119".

17) Local Relief

Local relief is a measure of the difference in elevation between the watershed divide and the valley floor relative to a cell's location. See above procedure for valley position.

Fill all nodata values with mean of adjacent cells

h:\sbr_bu\dtms\relief2, rectangle, 3, 3), h:\sbr_bu\dtms\relief2), focalmean(h:\sbr_bu\dtms\relief2, rectangle, 3, 3), h:\sbr_bu\dtms\relief2) (repeated 5 times)

Resample to 30 feet

18-19) (rsp1, rsp2)

RSP (relative slope position) is an estimate of the slope position at each cell location relative to the nearest ridge and drainage (Wilds 1996). A value of 100 represents the bottom of the slope and 0 the top of the slope (the ridge). Relative slope position uses (1) a threshold level of flow accumulation to represent slope bottom, (2) the difference between mean elevation and highest elevation in a moving window to represent ridges, and (3) flow-length to calculate distance to the top or bottom. Steps to produce RSP performed with the raster calculator:

- GRID commands: note* create flowdirection and flowaccumulation (floating point) coverages from the elevationgrid first a)
- b) f:\3rd approx\dtms\streams7temp = con(f:\3rd approx\dtms\flowacc20 < 806, 1) 7.4 acres (for 20x20 ft grid cells) streams20temp = con(flowacc20 < 2178, 1) 20 acres (for 20x20 ft grid cells)
- f:\3rd approx\dtms\streams flip2 = con(isnull(f:\3rd approx\dtms\streams7temp), 1, 0) c)
- f:\3rd_approx\dtms\streams_thin2 = thin(f:\3rd_approx\dtms\streams_flip2) d)
- f:\3rd_approx\dtms\streams2 = setnull(f:\3rd_approx\dtms\streams_thin2 > 0, 1) e)
- setmask streams2 (do in spatial analysis, options) f)
- f:\3rd_approx\dtms\flow_dir2 = f:\3rd_approx\dtms\flowdir20 g)
- setmask off (do in spatial analysis, options) h)
- f:\3rd approx\dtms\flow down = flowlength(f:\3rd approx\dtms\flow dir2, #, downstream) i)
- j) f:\3rd_approx\dtms\mean = focalmean (f:\3rd_approx\dtms\elev_20ft, rectangle, 20, 20) ... 10x10 for 2.75 acres, 20x20 for 7.4 acres, and 30 x 30 for 20 acres.
- k) f:\3rd approx\dtms\differ = f:\3rd_approx\dtms\mean - f:\3rd_approx\dtms\elev_20ft
- f:\3rd approx\dtms\ridges = con(f:\3rd approx\dtms\differ < -20, 1, 0) I)
- ... < -10 for 2.75 acres, < -20 for 7.4 acres, and < -40 for 20 acres
- f:\3rd_approx\dtms\thin_ridges = thin(f:\3rd_approx\dtms\ridges, #, #, #, 15) m)
- f:\3rd_approx\dtms\top = setnull(f:\3rd_approx\dtms\thin_ridges > 0, 1) n)
- 0) setmask top
- p) f:\3rd_approx\dtms\flow_dir3 = f:\3rd_approx\dtms\flow_dir2
- setmask off a)
- r) f:\3rd_approx\dtms\flow_up = flowlength(f:\3rd_approx\dtms\flow_dir3, #, upstream)
- s) f:\3rd_approx\dtms\rsp_float = f:\3rd_approx\dtms\flow_up / (f:\3rd_approx\dtms\flow_up + f:\3rd_approx\dtms\flow_down) (this puts large number on btm)
- t)
- u)
- f:\3rd_approx\dtms\rspa = int(f:\3rd_approx\dtms\rsp_float * 100) f:\3rd_approx\dtms\rspb = con(f:\3rd_approx\dtms\thin_ridges == 1, 0, f:\3rd_approx\dtms\rspa) f:\3rd_approx\dtms\rspc = con(f:\3rd_approx\dtms\streams_thin2 == 1, 100, f:\3rd_approx\dtms\rspb) v)
- f:\3rd_approx\dtms\rspfinal = focalmean (f:\3rd_approx\dtms\rspc, rectangle, 3, 3) w)

This was run with both 7.4 and 20 acre minimum flow accumulation.

20) Slopelength

Slope length is an estimate of the cell position along a slope segment, from the ridges (major and tertiary) to the bottom of the slope. The ridges and slope bottom were estimated following similar procedures the RSP calculation (Wilds 1996) equals the sum of 'flowup' and 'flowdown' from rsp1 (uses 7.4 acres to accumulate enough to start stream).

Steps to produce slopelength performed with the raster calculator:

- GRID commands: note* create flowdirection and flowaccumulation (floating point) coverages from the elevation grid first. a) f:\3rd_approx\dtms\streams7temp = con(f:\3rd_approx\dtms\flowacc20 < 806, 1) 7.4 acres (for 20x20 ft grid cells)
- b) f:\3rd approx\dtms\streams flip2 = con(isnull(f:\3rd approx\dtms\streams7temp), 1, 0)
- f:\3rd approx\dtms\streams thin2 = thin(f:\3rd approx\dtms\streams flip2) c)
- f:\3rd_approx\dtms\streams2 = setnull(f:\3rd_approx\dtms\streams_thin2 > 0, 1) d)
- setmask streams2 (do in spatial analysis, options) e)
- f) f:\3rd approx\dtms\flow dir2 = f:\3rd approx\dtms\flowdir20
- g) setmask off (do in spatial analysis, options)
- f:\3rd_approx\dtms\flow_down = flowlength(f:\3rd_approx\dtms\flow_dir2, #, downstream) h)
- f:\3rd approx\dtms\mean = focalmean (f:\3rd approx\dtms\elev 20ft, rectangle, 20, 20) i)
- f:\3rd_approx\dtms\differ = f:\3rd_approx\dtms\mean f:\3rd_approx\dtms\elev_20ft j)
- k) f:\3rd_approx\dtms\ridges = con(f:\3rd_approx\dtms\differ < -20, 1, 0)
- f:\3rd_approx\dtms\thin_ridges = thin(f:\3rd_approx\dtms\ridges, #, #, #, 15) I)
- f:\3rd_approx\dtms\top = setnull(f:\3rd_approx\dtms\thin_ridges > 0, 1) m)
- n) setmask top
- f:\3rd_approx\dtms\flow_dir3 = f:\3rd_approx\dtms\flowdir20 o)
- p) setmask off
- f:\3rd_approx\dtms\flow_up = flowlength(f:\3rd_approx\dtms\flow_dir3, #, upstream) q)
- $f:\3^{rd}$ _approx\dtms\slopelength1 = $f:\3^{rd}$ _approx\dtms\flow_up + $f:\3^{rd}$ _approx\dtms\flow_down r) This results in values > 7000ft scattered, set these to null
- s) f:\3rd_approx\dtms\slopelength2 = setnull(f:\3rd_approx\dtms\slopelength1 > 7000, f:\3rd_approx\dtms\slopelength1) Fill in null values from above and streams

f:\3rd_approx\dtms\slopelength4 = con(isnull(f:\3rd_approx\dtms\slopelength3), focalmean(f:\3rd_approx\dtms\slopelength3, rectangle, 3, 3), f:\3rd_approx\dtms\slopelength3)

21) <u>slope</u>

The rate of maximum change in z value (elevation_ft) from each cell derived from the DEM: GRID function slope with percentrise.

22) <u>solar</u>

The yearly solar radiation per cell derived from the DEM. See "Area Solar Radiation" in ARC TOOLBOX, Spatial Analyst Tools, Radiation. Processing was performed on the elevation grid re-sampled to 90.00 ft. grid cell size. This elevation grid must be converted to a floating point – AND – environmental settings need to be at default levels.

23-24) Stream influence

DSTRM (distance to stream) is a measure of each cell's distance to the nearest stream, regardless of stream order. Streams are modeled from the elevation DEM using ESRI hydrology tools. The steps were used to produce distance to streams:

Make streams from 20 ft. DEM (6.096 meters); use ESRI hydrology tools to calculate a) flow direction, and b) flow accumulation (integer), Set 13 acres to accumulate water (526 10x10 meter cells, 1633 – 20x20ft cells). In raster calculator = streamgrid = setnull(flowaccumulation < 526, 1). Calculate Euclidean distance to stream (GRID command, Dstrm = eucdistance stream).

Stream_diff (each cell's difference in elevation relative to the *closest* stream, is a measure of the difference in elevation of the individual cell and the closest stream (above stream = positive number, below river = negative number). Create a coverage describing river elevations using the raster calculator:

h:\sbr_bu\dtms\streamelev = setnull(h:\sbr_bu\dtms\streams13 ne 1, h:\sbr_bu\dtms\elev_20ft)
Fill in areas that are not streams through a series of focalmin commands:
outgrid = con(isnull(stream_elev), focalmin (stream_elev, circle, 3), stream_elev).
h:\sbr_bu\dtms\temp1 = con(isnull(h:\sbr_bu\dtms\stream_elev), focalmin(h:\sbr_bu\dtms\stream_elev, circle, 3\,
h:\sbr_bu\dtms\stream_elev)

This is an attempt to fill in the non-stream landscape with the closest stream elevation to allow easy subtraction with grid algebra. A 3x3 circular neighborhood was used for iterations, then a 5x5 rectangular neighborhood for the remainder (in this case, 10, 5x5 iterations). = strm_el_fill.

Calculate difference in elevation between each cell and the closest stream: stream_diff = elevation - strm_el_fill

This results in many areas below streams. Create nodata values for these areas (setnull command), H:\sbr_bu\dtms\temp = setnull(h:\sbr_bu\dtms\stream_diff < 0, h:\sbr_bu\dtms\stream_diff) ... then fill the null values with the surrounding average stream_diff values, until all are filled (in this case, h:\sbr_bu\dtms\temp3 = con(isnull(h:\sbr_bu\dtms\temp2), focalmean(h:\sbr_bu\dtms\temp1, rectangle, 3,3), h:\sbr_bu\dtms\temp2) .. 39 iterations.

25-26) River influence

distance to rivers (Rivdist)

Same process as distance to streams but using 4th order and greater streams only.

Distance above rivers (i.e., streams 4th order and greater) (Riveldiff) The following process was used: Create stream order coverage Create elevation of Rivers using 20 ft. elevation DEM H:\sbr_bu\dtms\river4 = con(h:\sbr_bu\dtms\sorder > 3, 1) H:\sbr_bu\dtms\river elev = con(h:\sbr_bu\dtms\river4 == 1, h:\sbr_bu\dtms\elev_20ft, 0)

Expand this elevation to the landscape; this process fills in the non-river landscape with the closest river elevation to allow easy subtraction with grid algebra using the following commands in the raster calculator, i.e., Fill in areas that are not rivers through a series of focalmin commands:

h:\sbr_bu\dtms\temp1 = con(isnull(h:\sbr_bu\dtms\river_elev), focalmin (h:\sbr_bu\dtms\river_elev, circle, 3), h:\sbr_bu\dtms\river_elev) h:\sbr_bu\dtms\temp2 = con(isnull(h:\sbr_bu\dtms\temp1), focalmin (h:\sbr_bu\dtms\temp1, circle, 3), h:\sbr_bu\dtms\temp1)

Used 3x3 for 25 iterations, 5x5 for 15 iterations, 10x10 for 5 iterations, 10 x 10 for 15 iterations using rectangle instead of circle which is faster, 30x30 rectangle for 100 iterations.

Subtract elevation from the river_elev_fill H:\sbr_bu\dtms\rivdiff = H:\sbr_bu\dtms\elev_projarea - h:\sbr_bu\dtms\rivelev_fill

This creates some areas that are negative (BELOW the river), most of which are reservoirs where the DEM is still showing the elevation below water, at least on the edges. However, some could be due to the constant filling in of nodata areas with the focalmin of elevation that are actually on the other side of the watershed divide and truly below the closest river. To partially fix this:

Change negative values within 300 ft of a river to zero:

C:\CNF\dtms\temp1 = con(c:\CNF\dtms\rivdiff < 0, con(c:\CNF\dtms\driver < 300, 0, c:\CNF\dtms\rivdiff), c:\CNF\dtms\rivdiff) Change negative values > 3000 ft from river to zero:

C:\CNF\dtms\temp2 = con(c:\CNF\dtms\rivdiff < 0, con(c:\CNF\dtms\driver > 3000, 0, c:\CNF\dtms\temp1), c:\CNF\dtms\temp1)

Fill zero values > 3000 ft from river with focalmax of surrounding areas:

C:\CNF\dtms\temp3 = con(c:\CNF\dtms\temp2 == 0, con(c:\CNF\dtms\driver > 3000, focalmax (c:\CNF\dtms\temp2, rectangle, 10, 10), c:\CNF\dtms\temp2), c:\CNF\dtms\temp2)

Done 12 times

Go back to areas near rivers:

C:\CNF\dtms\temp13 = con(c:\CNF\dtms\temp12 < 0, con(c:\CNF\dtms\driver < 3001, 0, c:\CNF\dtms\temp12), c:\CNF\dtms\temp12)

27) <u>trmi</u>

TRMI (terrain relative moisture index) is an estimate of the moisture regime for each cell based upon 3 variables: aspect, slope position, and slope curvature using the weighted scalar developed by Parker (1982). TRMI combines aspect, slope (<u>measured in degrees</u>), slope configuration (planiform curvature and profile curvature) and relative slope position. The following GRID commands were used in the raster calculator. These commands require additional reclassification tables found in *.rmt files. The directory location for the *.rmt files needs to be specified in the equations. Steps include:

- a) config_a = reclass (curvepl, plan.rmt) f:\3rd_approx\dtms\config_a = reclass(f:\3rd_approx\dtms\curvepl, f:\3rd_approx\dtms\trmi_files\plan.rmt)
- b) config_b = reclass (curvepr, prof.rmt) f:\3rd_approx\dtms\config_a = reclass(f:\3rd_approx\dtms\curvepl, f:\3rd_approx\dtms\trmi_files\plan.rmt)
- c) config1 = con(config_a < 0 & config_b < 0, 10, 0) f: 3^{rd} _approx/dtms/config1 = con(f: 3^{rd} _approx/dtms/config_a < 0 & f: 3^{rd} _approx/dtms/config_b < 0, 10, 0)
- config2 = con(config_a == 0 & config_b < 0, 8, 0) f:\3rd_approx\dtms\config2 = con(f:\3rd_approx\dtms\config_a == 0 & f:\3rd_approx\dtms\config_b < 0, 8, 0)
- e) config3 = con(config_a < 0 & config_b == 0, 7, 0) f:\3rd_approx\dtms\config3 = con(f:\3rd_approx\dtms\config_a < 0 & f:\3rd_approx\dtms\config_b == 0, 7, 0)
- f) config4 = con(config_a == 0 & config_b == 0, 5, 0) f:\3rd_approx\dtms\config4 = con(f:\3rd_approx\dtms\config_a == 0 & f:\3rd_approx\dtms\config_b == 0, 5, 0)
- g) config5 = con(config_a > 0 & config_b == 0, 3, 0) f:\3rd_approx\dtms\config5 = con(f:\3rd_approx\dtms\config_a > 0 & f:\3rd_approx\dtms\config_b == 0, 3, 0)
- h) config6 = con(config_a == 0 & config_b > 0, 2, 0) f:\3rd_approx\dtms\config6 = con(f:\3rd_approx\dtms\config_a == 0 & f:\3rd_approx\dtms\config_b > 0, 2, 0)
- i) config = config1 + config2 + config3 + config4 + config5 + config6 f:\3rd_approx\dtms\config = f:\3rd_approx\dtms\config1 + f:\3rd_approx\dtms\config2 + f:\3rd_approx\dtms\config3 + f:\3rd_approx\dtms\config6 + f:\3rd_approx\dtms\config6
- j) trmi_slope = reclass(slope, slope.rmt) f:\3rd_approx\dtms\trmi_slope = reclass (f:\3rd_approx\dtms\slope_degrees, f:\3rd_approx\dtms\trmi_files\slope.rmt)
- k) trmi_asp = reclass(aspect, aspect.rmt) f:\3rd_approx\dtms\trmi_asp = reclass(f:\3rd_approx\dtms\aspraw, f:\3rd_approx\dtms\trmi_files\aspect.rmt) (results in many values > 20, set these to null and fill in nulls with surrounding values)
 F:\3rd_approx\dtms\trmitemp1 = con(isnull(f:\3rd_approx\dtms\trmitemp1), focalmean(f:\3rd_approx\dtms\trmitemp1, rectangle, 3,3), f:\3rd_approx\dtms\trmitemp1
- trmi_rsp = reclass(rsp, rsp.rmt) (used rsp2 based on larger drainage area) f:\3rd_approx\dtms\trmi_rsp = reclass(f:\3rd_approx\dtms\rsp2, f:\3rd_approx\dtms\trmi_files\rsp.rmt)
- m) trmi_final = trmi_asp + trmi_slope + trmi_rsp + config f:\3rd_approx\dtms\trmitemp3 = f:\3rd_approx\dtms\trmi_asp + f:\3rd_approx\dtms\trmi_rsp + f:\3rd_approx\dtms\config
- n) setnull all trmi values > 100 and fill these with focalmean 3x3
 f:\3rd_approx\dtms\trmitemp5 = setnull(f:\3rd_approx\dtms\trmitemp4 > 100, f:\3rd_approx\dtms\trmitemp4)
 f:\3rd_approx\dtms\trmitemp5 = con(isnull(f:\3rd_approx\dtms\trmitemp4), focalmean(f:\3rd_approx\dtms\trmitemp4, rectangle, 3,3), f:\3rd_approx\dtms\trmitemp4)

28) Terrain shape index

This DTM estimates local convexity or concavity slightly broader than curvature and is calculated by subtracting elevation value of center cell from value of each of 8 neighbors.

a) H:\sbr_bu\dtms\gw_tsi = h:\sbr_bu\dtms\elev_20ft - focalmean(h:\sbr_bu\dtms\elev_20ft, circle, 5)

This looks much like curvature from ESRI only a bit smoother.

From: McNab, H.W. 1993. A topographic index to quantify the effect of mesoscale landform on site productivity. Can. J. For. Res. 23: 1100-1107.

29) Valley position:

Valley position is a measure of the elevational position of a cell relative to the <u>watershed divide</u> and the <u>valley floor</u>. The old method of calculating this DTM used the original DEM (meters x, y, and z) to model streams with a 13 acre accumulation area and stream order, to identify valley floor and the same DEM to identify watershed divide. This resulted in many areas with negative numbers due to the closest stream (and its elevation) and required extensive and questionable methods to fill these areas. The new method determines the watershed divide as the maximum elevation within a 3/4 mile x 3/4 mile window, i.e., it is an estimate (model) of where major ridges occur and the elevation of grid cells at those locations and the minimum elevation in a similar manor. It uses 66 foot DEM (resampled from the original 20 foot DEM) because: this is a mesoscale indicator meant to evaluate environments at a broader scale than Relative Slope Position that does not require micro-scale data.

GRID commands:

H:\sbr_bu\dtms\maxelev = focalmax(h:\sbr_bu\dtms\elev_66ft, rectangle, 60,60) H:\sbr_bu\dtms\minelev = focalmin(h:\sbr_bu\dtms\elev_66ft, rectangle, 60,60) H:\sbr_bu\dtms\relief = h:\sbr_bu\dtms\maxelev - h:\sbr_bu\dtms\minelev

This results in a few some areas with "negative" or zero relief. Set all values < 1 to "1" $H:\$ H:\sbr_bu\dtms\relief2 = con(h:\sbr_bu\dtms\relief < 1, 1, h:\sbr_bu\dtms\relief)

H:\sbr_bu\dtms\down = h:\sbr_bu\dtms\elev_66ft - h:\sbr_bu\dtms\minelev

Convert both relief2 and down to floating point

H:\sbr_bu\dtms\vposfloat = 1 – (h:\sbr_bu\dtms\downfloat / h:\sbr_bu\dtms\relief2float) Use focalmean 3x3 once

H:\sbr_bu\dtms\vposfloat2 = focalmean(h:\sbr_bu\dtms\vposfloat, rectangle, 3, 3) This still results in some zero values adjacent to values of "1", change all zero values to 1

H:\sbr_bu\dtms\vposfloat3 = con(h:\sbr_bu\dtms\vposfloat2 == 0, 1, h:\sbr_bu\dtms\vposfloat2)

Fill all nodata values with mean of adjacent cells

h:\sbr_bu\dtms\vpostemp1 = con(isnull(h:\sbr_bu\dtms\vpostemp1), focalmean(h:\sbr_bu\dtms\vpostemp1, rectangle, 3, 3), h:\sbr_bu\dtms\vpostemp1) (repeated 5 times)

Resampled to 30 feet

APPENDIX IV: Analysis Process

Maximum Entrophy (MAXENT)

Create DTMs with the same extent as study area boundary: Extract each DTM by Mask (Arc tools) to ensure that grids are the same extent. Covert all Grids to ASCII DO THESE as a BATCH process.

Create CSV file with the following variables: **TYPE, Xcoordinate, Ycoodinate, DTM values**.

Use Hawth tools to attach X, Y to original plot coverage

Use Hawth tools to attach DTM data to points: Hawth Analysis, point intersection.

Export table and check that format, otherwise, strip all but TYPE, X, Y and DTM from file, save as CSV file.

i.e., (open an .xl file and select 'open as dbf', edit if necessary and SAVE AS [MSDOS] CSV file), i.e., (Comma delimited)

Run Maxent

Follow wizard and locate plot data file with attributes Follow wizard and locate folder with environmental data, wizard inserts all .asc files. Identify location for results (make separate directory) Export all the resulting .asc files with floating point to create a Grid for each Ecological Zone.

Maximum probability Grid

Uses multiple Ecological Zone models to determine the maximum value on a cell-by-cell basis within the Analysis window, for example:

c:\tn\models3\max3o = max ~

(c:\tn\models3\gbald2, c:\tn\models3\sf2, c:\tn\models3\nhslope2, c:\tn\models3\nhcove2, ~ c:\tn\models3\montoakrich2, c:\tn\models3\montoakcove4, c:\tn\models3\montoakslope3, c:\tn\models3\dmoak4, ~ c:\tn\models3\oakrhodo, c:\tn\models3\rcove2,c:\tn\models3\acove3, c:\tn\models3\hero3, c:\tn\models3\poh4, ~ c:\tn\models3\dryoakkallat2,c:\tn\models3\dryoaklite, c:\tn\models3\floodplain, c:\tn\models3\alluvial3, ~ c:\tn\models3\sloak)

Creating the Ecological Zone model

Read each model Grid to compare to the maximum probability for that grid cell; if a match occurs, insert Ecological Zone model code.

c:\tn\models3\zoneo = con(c:\tn\models3\max3o == c:\tn\models3\gbald2, 27, ~ c:\tn\models3\max3o == c:\tn\models3\sf2, 1, ~ c:\tn\models3\max3o == c:\tn\models3\nhslope2, 2, ~ c:\tn\models3\max3o == c:\tn\models3\nhcove2, 3, 7 c:\tn\models3\max3o == c:\tn\models3\montoakrich2, 24, ~ c:\tn\models3\max3o == c:\tn\models3\alluvial3, 6, ~ c:\tn\models3\max3o == c:\tn\models3\floodplain. 23. ~ c:\tn\models3\max3o == c:\tn\models3\montoakcove4, 28, ~ c:\tn\models3\max3o == c:\tn\models3\montoakslope3, 9, ~ c:\tn\models3\max3o == c:\tn\models3\oakrhodo, 29, ~ c:\tn\models3\max3o == c:\tn\models3\rcove2, 5, ~ c:\tn\models3\max3o == c:\tn\models3\acove3, 4, ~ c:\tn\models3\max3o == c:\tn\models3\dmoak4, 13, ~ c:\tn\models3\max3o == c:\tn\models3\hero3, 8, ~ c:\tn\models3\max3o == c:\tn\models3\poh4, 18, ~ c:\tn\models3\max3o == c:\tn\models3\dryoakkallat2, 10, ~ c:\tn\models3\max3o == c:\tn\models3\dryoaklite, 11, ~ c:\tn\models3\max3o == c:\tn\models3\sloak, 16, 0)

Appendix V: Ecotone evaluation and Ecological Zone model adjustments.

The following steps were used for evaluating / adjusting ecotone model areas:

- 1. Examine the accuracy assessment matrix to identify an Ecological Zone (Zone) with a large '<u>omission error</u>', i.e., field reference plots that are incorrectly classified (modeled) into another type (the off-diagonal elements). Acidic Cove (Acove) will be used as an example; 49 of the total 614 Acove plots were modeled as Dry-Mesic Oak (Dmoak) in the 'northern' model (table 1). Because Acove was the Zone identified in the field, it is considered the reference data (type). Reference data is known information of high accuracy (theoretically 100% accuracy) and therefore we assume that the Dmoak model is wrong (it was over-mapped) because it does not match the reference data and may therefore need adjustment. The focus here is on adjusting pixel values **only** within areas modeled / mapped as Dmoak. If Acove had a large omission error in Rich Cove (which it does), then the focus would be on adjusting pixels within the Rich Cove model area.
- 2. Intersect all field plots with the preliminary GIS model and extract only those plots that occur in Dmoak (the Zone assumed to have been over-mapped) along with all environmental variables associated with all field plots that fall within this zone. Convert this to a spreadsheet (table 2).
- 3. Calculate the difference between the reference type probability and the maximum probability at the plot location for that same pixel. This is labeled as the 'difference value1 (DV1)' (table 2); .0001 is added to this difference value so that it becomes the maximum value at that pixel (labeled DV1+). The maximum probability is derived from Maxent and the maximum probability algorithm and is used to assign the model / map prediction (appendix IV) and is being compared here to the reference or 'true' Zone probability value. DV1+ is the value that if added to the original Acove MAXENT model, would result in a correct classification of the unadjusted 'incorrectly classified' reference plot(s), and theoretically other pixels away from these plots to be correctly modeled. This is because the maximum probability algorithm assigns a model prediction based upon the Zone having the highest probability for that pixel; by adding DV1 to the pixels that constitute the <u>omission error</u>, the highest probability is transferred to the correct type (table 2).
- 4. Sort the data on DV1+, from low to high and choose a realistic threshold value (around .10) to highlight those Acove plots having the least difference between the modeled type and the reference type, i.e., where the model error is smallest. Disregard values greater than the threshold but maintain data from all plots within the Dmoak model area including omission errors for types other than Acove (table 2).
- 5. Add DV1+ threshold value (.1154) to all plots within the Dmoak model (table 3, column 8 (c)); the result is the new Acove probability, i.e., the adjustment value that would be added to the Acove Maxent model (ONLY WITHIN the Dmoak model area) and would compete with other Zone Maxent models in the maximum probability algorithm.
- 6. Subtract the original maximum probability value from the new Acove probability value = (DV2), maintain the highlight for those plots (rows) where DV1+ was added, and sort on Acove probability, high to low (table 3). This sort is done to examine the relationship between Acove probability and plot misclassifications. Adjusting plots having an original Maxent probability less than .4 was seldom done unless this was considered a relatively large value by comparison.
- 7. The final step for adjusting the ecotone between Acove and Dmoak, in this example, includes a close examination of each environmental variable within the threshold limit (highlighted plots / rows) to see which is most associated with the greatest number of 'least different' reference vs. model values and results in the greatest gain for Acove. The point here is not only to adjust pixels that decrease the <u>omission error</u> to improve the accuracy assessment matrix. The point is to consider what environmental variables make sense in separating Acove from Dmoak because any adjustment made at plot locations also occurs in pixels away from plot areas within these specified environmental conditions (table 4). It is assumed that, because reference plots are used to 'train' habitat suitability models using MAXENT, the environmental relationships observed at these locations should also 'train' adjustments elsewhere. The result of this analysis was to: "add .115 to all Acove probabilities greater than .42 within the Dmoak model area where Relative Slope Position (RSP2) values are > 16, i.e., slope positions lower on the hill".
- 8. Re-evaluate additional threshold limits and cycle through steps 4-8 to get the greatest gain.
- 9. Rerun the maximum probability model (combining all types again) using the "new Acove" model. Display the 'before and after' combined models (figures 1-3 below) to evaluate if they make any sense at all, e.g., does the ecotone adjustment reflect a true environmental difference between the types under question and do the new type distributions (mapping) fit local knowledge. If they don't make sense, drop this analysis. If they do, build from this point by going back to step 1 for another type or for this same type within another area. Figures 4-6 display the results of multiple adjustments in another example area (Waynesville Watershed).
- Complete this procedure for the 'northend model', 'southend model', for each of the FLN landscapes, and for areas outside FLN landscapes having additional reference plots not included in these areas, restricting adjustments to the models within these individual areas.

Step 1: Identify Zone with a large number of field plots incorrectly modeled (high <u>omission</u> error). Acove in this example with 49 of the total 614 plots modeled as Dmoak (type # 13). Note the number of plots being modeled into the Dmoak type = 316, and higher than the number of reference Dmoak plots = 222. This indicates a high <u>commission</u> error for Dmoak.

#	#	1	27	2	3	4	29	5	6	23	8	24	9	28	13	10	11	16	18	31	total	% cor
1	sf	28	1	19	8	2		1			4		1								64	44%
27	gbald	4	12	3									1								20	60%
2	nhslope	1		34	5			1			1		5								47	72%
3	nhcove	2		4	49	1		11			3		4	1							75	65%
3		-		-		252	42	50	12		1		15	22	40	14		25	2		614	57%
4	acove			3	5	352	45	59	15		1		15		49	14		25			014	57%
29	oakrhodo				2	5	80	4					7	4	13	6	4		2		127	63%
5	rcove				1	15	7	158	2				11	19	2	3	2	1			221	71%
6	alluv					10			51					7				1			69	74%
23	floodplain								2	29					1						32	91%
8	hero			12	5		4				34		18	1	1	2			1		78	11%
0	nero			12	5		4				54		10			2					78	4470
24	mont_rich										5	2	2		1	1					11	18%
9	montoakslope			2	2		4	2			1		133	5	5	11			5		170	78%
28	montoakcove					5	3	4					3	73	2	1	1				92	79%
13	dmoak					7	8	1					6	13	140	18	5	19	5		222	63%
10	dryoakEheath					1	6	2			1		6	3	10	72		10	1		112	64%
11	drvoakDheath						4	1					4	2	10	4	33		2		60	55%
16	sloak					2								1	6	1	2	64	1		77	83%
18	poh			1		3	23				6		22	7	67	36	35	21	128		349	37%
31	slpoh					1									9			33		1	44	2%
	TOTAL correct	28	12	34	49	352	80	158	51	29	34	2	133	73	140	72	33	64	128	1	1473	59%
—						552		100	51			_	100	,,,	1.0				120	-	15	
	TOTAL column	35	13	78	77	404	182	244	68	29	56	2	238	169	316	169	82	174	147	1	2484	

Table 1: Accuracy Assessment Matrix for the initial / 1^{st} preliminary North-end model

Table 2: Results for Steps 2-4.

				(a)	(b) — (a)	(b)							
row	Reference	Model	Dmoak-13	Max	DV1	Ac ove				23 variables			
#	Туре	Туре	Probability	Prob.	DV1+	Prob.	aspc	aspr	cur	\rightarrow	tsi	slope	
					DV1+.0001								
1	acove	13	0.79	0.79	-0.0050	0.7857	0.24	75.10	-0.58	\rightarrow	-7	72	
2	acove	13	0.22	0.22	-0.0068	0.2171	-0.83	152.59	-4.51	\rightarrow	-16	34	
3	acove	13	0.87	0.87	-0.0179	0.8505	0.27	74.61	-0.07	\rightarrow	-2	19	
4	acove	13	0.85	0.85	-0.0267	0.8193	0.99	8.28	0.57	\rightarrow	3	63	
5	acove	13	0.60	0.60	-0.0275	0.5693	0.75	41.74	0.71	\rightarrow	2	26	
6	acove	13	0.82	0.82	-0.0405	0.7836	0.47	62.27	0.53	\rightarrow	0	62	
7	acove	13	0.80	0.80	-0.0426	0.7543	0.71	45.33	-1.88	\rightarrow	-6	77	
8	acove	13	0.59	0.59	-0.0439	0.5471	0.37	68.33	-0.78	\rightarrow	-8	50	
9	acove	13	0.78	0.78	-0.0475	0.7295	-0.87	150.98	0.92	\rightarrow	-5	60	
10	acove	13	0.84	0.84	-0.0489	0.7925	-0.97	197.32	-0.05	\rightarrow	-10	42	
11	acove	13	0.73	0.73	-0.0540	0.6740	0.52	58.45	0.08	\rightarrow	2	50	
12	acove	13	0.47	0.47	-0.0540	0.4147	-0.84	212.69	0.79	\rightarrow	-3	58	
13	acove	13	0.73	0.73	-0.0575	0.6755	0.25	75.42	-1.29	\rightarrow	-4	49	
14	acove	13	0.41	0.41	-0.0601	0.3468	0.30	72.35	1.00	\rightarrow	-2	28	Thrashold
15	acove	13	0.70	0.70	-0.0611	0.6390	0.98	11.26	-0.94	\rightarrow	-8	72	Inreshold
16	acove	13	0.83	0.83	-0.0633	0.7634	0.60	53.15	-1.70	\rightarrow	-3	58	Value, add
17	acove	13	0.75	0.75	-0.0634	0.6864	0.35	68.82	-1.75	\rightarrow	-12	35	.0001 to
18	acove	13	0.72	0.72	-0.0675	0.6574	0.77	40.06	0.30	\rightarrow	7	63	1000110
19	acove	13	0.79	0.79	-0.0703	0.7244	0.33	70.80	0.32	\rightarrow	-6	55	Acove to
20	acove	13	0.58	0.58	-0.0826	0.4930	-0.80	216.62	-1.52	\rightarrow	-12	39	exceed max
21	acove	13	0.58	0.58	-0.0826	0.4930	-0.80	216.62	-1.52	\rightarrow	-12	39	.0001 +
22	acove	13	0.64	0.64	-0.0881	0.5553	0.06	86.60	-0.39	\rightarrow		66	1152 -
23	acove	13	0.64	0.64	-0.0882	0.5543	0.26	74.80	-0.26	<i>→</i>	-4	81	.1153 =
24	acove	13	0.75	0.75	-0.0908	0.6605	0.85	32.10	-0.73	\rightarrow	-5	60	.1154
25	acove	13	0.74	0.74	-0.0945	0.6475	-0.41	95.70	-1.16	\rightarrow	-12	38	
26	acove	13	0.77	0.77	-0.0946	0.6796	0.75	38.87	-0.14	\rightarrow	-7	49	
27	acove	13	0.61	0.61	-0.0955	0.5189	-0.66	133.07	-1.31	\rightarrow	-10	27	
28	acove	13	0.84	0.84	-0.0971	0.7401		57.15	1.65	\rightarrow	1	79	
29	acove	13	0.60	0.60	-0.1151	0.4802	0.79	38.19	1.47	\rightarrow	2	72	
30	acove	13	0.70	0.70	-0.1154	0.5816	-0.66	228.55	-0.19	\rightarrow	5	38	
31	acove	13	0.71	0.71	-0.1212	0.5863	0.51	59.77	-0.06	\rightarrow	-12	62	
32	acove	13	0.67	0.67	-0.1228	0.5468	-0.91	155.37	0.10	\rightarrow	-10	61	
33	acove	13	0.87	0.87	-0.1359	0.7295	0.39	66.98	0.26	7	-/	61	
34	acove	13	0.85	0.85	-0.1396	0./111	0.39	20.91	-8.08	7	-24	1/	
35	acove	13	0.84	0.84	-0.1459	0.6977	0.31	/1./4	0.79	7	-3	53	
30	acove	13	0.56	0.56	-0.1518	0.4082	1.00	330.07	0.69	7	2	53	
37	acove	13	0.35	0.35	-0.1616	0.1911	0.57	55.09	-0.22	7	-1	80	
20	acove	13	0.71	0.71	-0.1038	0.5425	0.44	74 52	0.31	7	4	80 27	
39	acove	13	0.82	0.82	-0.1071	0.0300	0.27	212.02	-0.20	~	-2	27	
40	acove	13	0.74	0.74	-0.1840	0.5505	-0.95	213.93	0.22	7	-/	28	
41	acove	13	0.74	0.74	-0.1800	0.5551	0.51	57.57	-0.56	~	-9	40	
42	acove	13	0.80	0.80	-0.2173	0.3738	-0.65	121 16	-3.00	~	-15	10	Rows 49 and
43	acove	10	0.72	0.72	-0.2803	0.4233	-0.05	EE 02	-5.05	_	-15	5	316 are
44	acove	13	0.83	0.85	-0.3010	0.3311	0.30	283.92	0.75	~	-1	50	highlighted to
45	acove	13	0.75	0.75	-0.3143	0.4745	0.23	26 25	-0.52		-10	52	show the total
40	acove	13	0.51	0.91	-0.31/7	0.3832	0.81	10.35	-0.52	<u>`</u>	-10	70	number of
47	acove	13	0.30	0.80	-0.3240	0.4/51	-0.72	135.68	0.70		-10	60	indifiber of
40	acove	13	0.82	0.82	-0.5503	0.1628	0.72	333.08	0.75	$\stackrel{\prime}{\rightarrow}$	-0	10	misclassified
50	dmoak	13	0.32	0.02	0.05+5	0.6666	-0.93	160.20	-1 54	×	-15	49	Acove plots and
51	dmoak	13	0.67	0.67		0 5658	0.35	69 57	0.35	, ,	10	24	total number of
<u>ار</u>	J	1.	.1.	J.		J. 3038	J. 33	J.	J. 35	Ĵ.	J.	24 J	plots that occur
315	sinoh	13	0.80	0.80		0 6546	0.86	31 37	0 19	$\stackrel{\vee}{\rightarrow}$	¥ 1	35	within the
316	slpoh	13	0.50	0.65		0.0867	-0.89	207 12	0.97	$\stackrel{\prime}{\rightarrow}$	9	25	Dmoak model
510	5.pon		0.05	0.05		5.0007	20.02	201.12	0.27	,		6.1	Billouk model

Table	3:	Results	for	Step	s 5	- 6.
-------	----	---------	-----	------	-----	------

				(a)	(b) - (a)	(b)	(c)	(c) - (a)				23 variables			
row	Reference	Model	Dmoak	Max	DV1	Acove	(b) +.1154	DV2	aspc	aspr	cur	\rightarrow	tsi	slope	
4	Туре	Type	Prob.	Prob.	0.0170	Prob.	New Acove	0.0070	0.27	74.64	0.07		2	10	Highlighted
1	acove	13	0.87	0.87	-0.01/8	0.8505	0.9659	0.0976	0.27	/4.61	-0.07	7	-2	19	hoves in this
2	acove	13	0.85	0.85	-0.0200	0.8195	0.9347	0.0666	0.99	0.20	0.57	7	10	40	boxes in this
3	acove	13	0.84	0.84	-0.0488	0.7925	0.9079	0.0000	-0.97	75 10	-0.05	7	-10	42	column indicate
4	acove	13	0.79	0.79	-0.0049	0.7857	0.9011	0.1105	0.24	/5.10	-0.58	7	-/	12	adjustments that
5	acove	13	0.82	0.82	-0.0404	0.7630	0.8990	0.0750	0.47	02.27 F2.1F	1.70	7		- 02	would result in a
0	acove	13	0.85	0.85	-0.0032	0.7034	0.8788	0.0522	0.60	45 22 -	-1.70	~	-3	56 77	correct
,	acove	13	0.80	0.80	-0.0425	0.7545	0.8697	0.0729	0.71	43.34	-1.00	7	-0	77	classification for
8	acove	13	0.84	0.84	-0.0970	0.7401	0.8555	0.0184	40.54	57.15	1.65	7	1	79	Acove
9	dcove	13	0.76	0.76	-0.0474	0.7295	0.8449	0.0080	-0.67	120.98	0.92	7	-5	60	Acove.
10	uryoakever	13	0.75	0.75	-0.0224	0.7267	0.8421	0.0950	-0.03	70.80	5.00	7	-1	5/	•
11	acove	13	0.79	0.79	-0.0702	0.7244	0.8398	0.0452	0.33	/0.80	0.32	7	-0	20	
12	sipon	13	0.78	0.78	-0.0940	0.0877	0.8031	0.0214	0.75	41.30 7E 12	0.47	7	3	29	
14	sipon	13	0.75	0.75	-0.1000	0.0870	0.8024	0.0140	0.20	/J.12	1.75	~	12	25	
14	acove	13	0.75	0.75	-0.0033	0.0804	0.8018	0.0521	0.35	20.02	-1.75	7	-12	35	
15	acove	13	0.77	0.77	-0.0943	0.0790	0.7930	0.0209	0.75	30.07 7E 42	1 20	7	-/	49	
10	acove	13	0.75	0.73	-0.0574	0.0755	0.7909	0.0560	0.25	75.42	-1.29	7	-4	49	
10	dcove	13	0.75	0.75	-0.0539	0.6740	0.7894	0.0015	0.52	20.45	1.08	7	1	50	
10	umoak	13	0.77	0.77	-0.1025	0.0000	0.7820	0.0131	-0.95	22.10	-1.54	7	-15	49	
19	acove	13	0.75	0.75	-0.0907	0.6605	0.7759	0.0247	0.85	32.10	-0.73	7	-5	60	
20	acove	13	0.72	0.72	-0.0675	0.6574	0.7728	0.0479	0.77	40.06	0.30	7	12	53	
21	acove	13	0.74	0.74	-0.0944	0.6475	0.7629	0.0210	-0.41	95.70	-1.10	7	-12	38	
22	acove	13	0.70	0.70	-0.0610	0.6390	0.7544	0.0544	0.98	11.20	-0.94	7	-8	72	Non-highlighted
23	rcove	13	0.74	0.74	-0.1123	0.6251	0.7405	0.0031	-0.51	120.54	1.32	7	0	53	hoves in this
24	oakrnodo	13	0.72	0.72	-0.1106	0.6093	0.7247	0.0048	-1.00	185.20	0.49	7	-2	51	boxes in this
25	acove	13	0.70	0.70	-0.1153	0.5816	0.6970	0.0001	-0.66	228.55	-0.19	7	5	38	column indicate
26	pon	13	0.67	0.67	-0.0837	0.5815	0.6969	0.0317	0.00	89.90	0.50	7	8	38	adjustments that
27	acove	13	0.60	0.60	-0.0274	0.5693	0.6847	0.0880	0.75	41.74	0.71	→ 	2	26	would result in
20	UIIIOak	13	0.67	0.67	-0.1057	0.5658	0.0812	0.0097	1 0.35	09.57	0.35	7	0	24	an incorrect
29	acove	13	0.64	0.64	-0.0880	0.5555	0.6707	0.0274	0.06	74.80	-0.39	7	1	00	classification for
30	acove	13	0.64	0.64	-0.0661	0.5545	0.6697	0.0275	0.20	74.60	-0.20	7	-4	51	Dmoak (the
22	dook	13	0.59	0.59	-0.0438	0.5471	0.0025	0.0710	0.37	225 05	-0.78	7	-0	50	Dilloak (the
32	SIUdk	13	0.61	0.61	-0.0711	0.5372	0.0520	0.0443	-0.70	122 07	1.21	7	10	72	correct type) and
22	acove	13	0.01	0.01	-0.0954	0.5169	0.0343	0.0200	-0.00	135.07	1.51	7	-10	27	for other types.
34 25	acove	13	0.56	0.58	-0.0825	0.4930	0.6084	0.0329	-0.80	210.02	-1.52	7	-12	39	
35	acove	13	0.56	0.56	-0.0825	0.4950	0.6084	0.0329	-0.80	210.02	-1.52	7	-12	39 72	
27	acove	13	0.00	0.00	-0.1130	0.4602	0.5950	0.0004	0.75	212.00	0.70	~	2	72	
37	dcove	13	0.47	0.47	-0.0539	0.4147	0.5301	0.0015	-0.64	212.09	0.79	7	-5	20	
20	unioak	13	0.47	0.47	-0.0097	0.4003	0.5157	0.0457	0.46	298.90 20E 01	1.07	7	10	23	
39	acove	13	0.40	0.40	-0.0203	0.3776	0.4932	0.0669	0.85	293.01	-1.57	7	-10	25	
40	acove	13	0.41	0.41	-0.0602	0.3408	0.4622	0.0552	0.30	152.55	1.00	7	-2	20	
41	dcove	13	0.22	0.22	-0.0067	0.2171	0.3325	0.1087	-0.85	21.20	-4.51	7	-10	54 10	
42	dinoak	13	0.14	0.14	-0.0215	0.1179	0.2355	0.0939	0.75	31.30	-0.85	7	-/	10	
45	SIUdK	13	0.08	0.08	-0.0103	0.0040	0.1600	0.0991	0.22	203.33	1.12	7	10	28	
44	dinoak	13	0.08	0.08	-0.0350	0.0468	0.1622	0.0804	0.15	62.79	1.09	7	10	30	
45	dmook	13	0.00	0.00	-0.0218	0.0395	0.1549	0.0930	1.00	162.33	0.08	7	-5	49	
40	dinoak	13	0.12	0.12	-0.0822	0.0351	0.1505	0.0332	-0.96	105.55	-0.32	7	-2	70	
47	ипоак	13	0.03	0.03	-0.0225	0.0090	0.1244	0.0929	0.19	281.37	0.72	→ _>	12	15	
40	acove	13	0.71	0.71		0.0000	0.7017	-0.0058	0.51	39.77	-0.00	~	-12	12	
49	umoak I	13	0.17	0.17		0.0439	0.1593	-0.0069	0.96	10.17	0.73	→ ↓	5	13	
- ₩ 215		\V 10	¥	¥		₩	0 120C	↓ 0.0000		220 64	\V 0.17	¥,	Ý	ô ⊑1	
315	sipon	13	0.03	0.03		0.0152	0.1506	-0.0999	-0.65	229.04	1.62	→ →	4	12	
210	pon	13	0.92	0.52		0.0555	0.1009	-0.7515	-1.00	1/3./3	-1.02	7	2	45	

Note: the table is sorted on Acove probability, from high to low and shows that although 49 plots were misclassified into Dmoak, most of these have a probability value exceeding .5 (from Maxent).

Table 4: Results for steps 7-8.

				(a)	(b) - (a)	(b)	(c)	(c) - (a)		25 variables			
row	Reference	Model	Dmoak	Max	DV1	Acove	(b) +.1154	DV2	rsp2	\rightarrow	tsi	slope	
	Туре	Туре	Prob.	Prob.		Prob.	New Acove						
1	acove	13	0.84	0.84	-0.0488	0.7925	0.9079	0.0666	97	\rightarrow	-10	42	
2	dmoak	13	0.77	0.77	-0.1023	0.6666	0.7820	0.0131	82	\rightarrow	-15	49	
3	acove	13	0.47	0.47	-0.0539	0.4147	0.5301	0.0615	79	\rightarrow	-3	58	
4	acove	13	0.73	0.73	-0.0574	0.6755	0.7909	0.0580	74	\rightarrow	-4	49	
5	acove	13	0.58	0.58	-0.0825	0.4930	0.6084	0.0329	74	\rightarrow	-12	39	
6	acove	13	0.58	0.58	-0.0825	0.4930	0.6084	0.0329	74	\rightarrow	-12	39	
/	acove	13	0.79	0.79	-0.0049	0.7857	0.9011	0.1105	/2	\rightarrow	-/	72	
0	dcove	13	0.87	0.87	-0.0178	0.8505	0.9659	0.0976	50	~	-2	19	
10	uryoakever	13	0.75	0.75	-0.0224	0.7207	0.8421	0.0930	52	7	-1 12	27	
10	acove	13	0.73	0.73	-0.0033	0.0804	0.8018	0.0521	40	~	-12	50	
12	sloak	13	0.75	0.75	-0.0333	0.0740	0.6526	0.0013	45		2	72	
13	acove	13	0.01	0.85	-0.0266	0.5572	0.9347	0.0888	45	, ,	3	63	
14	acove	13	0.59	0.59	-0.0438	0.5471	0.6625	0.0000	45	\rightarrow	-8	50	
15	acove	13	0.82	0.82	-0.0404	0.7836	0.8990	0.0750	43	÷	0	62	
16	acove	13	0.78	0.78	-0.0474	0.7295	0.8449	0.0680	38	÷	-5	60	
17	oakrhodo	13	0.72	0.72	-0.1106	0.6093	0.7247	0.0048	37	\rightarrow	-2	51	
18	acove	13	0.64	0.64	-0.0880	0.5553	0.6707	0.0274	31	\rightarrow	1	66	
19	acove	13	0.77	0.77	-0.0945	0.6796	0.7950	0.0209	31	\rightarrow	-7	49	
20	acove	13	0.61	0.61	-0.0954	0.5189	0.6343	0.0200	31	\rightarrow	-10	27	
21	acove	13	0.72	0.72	-0.0675	0.6574	0.7728	0.0479	31	\rightarrow	7	63	
22	acove	13	0.60	0.60	-0.1150	0.4802	0.5956	0.0004	30	\rightarrow	2	72	
23	rcove	13	0.74	0.74	-0.1123	0.6251	0.7405	0.0031	29	\rightarrow	0	53	Dan2 groater
24	acove	13	0.70	0.70	-0.1153	0.5816	0.6970	0.0001	28	\rightarrow	5	38	RSp2 greater
25	acove	13	0.83	0.83	-0.0632	0.7634	0.8788	0.0522	27	\rightarrow	-3	58	than 16 is the
26	acove	13	0.74	0.74	-0.0944	0.6475	0.7629	0.0210	25	\rightarrow	-12	38	chosen cut-off
27	acove	13	0.64	0.64	-0.0881	0.5543	0.6697	0.0273	23	\rightarrow	-4	81	value that
28	acove	13	0.80	0.80	-0.0425	0.7543	0.8697	0.0729	20	\rightarrow	-6	77	results in the
29	acove	13	0.70	0.70	-0.0610	0.6390	0.7544	0.0544	18	\rightarrow	-8	72	greatest net
30	acove	13	0.75	0.75	-0.0907	0.6605	0.7759	0.0247	17 🖣	\rightarrow	-5	60	gain in Acove
31	slpoh	13	0.79	0.79	-0.1006	0.6870	0.8024	0.0148	15	\rightarrow	4	61	accuracy
32	slpoh	13	0.78	0.78	-0.0940	0.6877	0.8031	0.0214	15	\rightarrow	3	29	accuracy
33	acove	13	0.79	0.79	-0.0702	0.7244	0.8398	0.0452	14	\rightarrow	-6	55	
34	acove	13	0.84	0.84	-0.0970	0.7401	0.8555	0.0184	14	\rightarrow	1	79	
35	acove	13	0.60	0.60	-0.0274	0.5693	0.6847	0.0880	12	\rightarrow	2	26	A sub officiality
30	pon	13	0.67	0.67	-0.0657	0.5615	0.6969	0.0317	0	7 7		30	A cut-off value
20	dmoak	13	0.07	0.07	-0.1037	0.3038	0.0812	0.0097	32	~	2	24	of > 11 was not
20	rcove	13	0.47	0.47	-0.0057	0.4003	0.4932	0.0437	43		-10	39	chosen because
40	acove	13	0.40	0.40	-0.0203	0.3778	0.4532	0.0552	52	$\stackrel{\prime}{\rightarrow}$	-10	28	just 3 additional
41	acove	13	0.22	0.22	-0.0067	0 2171	0 3325	0 1087	17))	-16	34	gains were
42	dmoak	13	0.14	0.14	-0.0215	0.1179	0.2333	0.0939	54	÷	-7	10	possible with 2
43	dmoak	13	0.06	0.06	-0.0218	0.0395	0.1549	0.0936	49	\rightarrow	-5	49	ikely losses
44	dmoak	13	0.12	0.12	-0.0822	0.0351	0.1505	0.0332	24	\rightarrow	-2	76	and the smaller
45	dmoak	13	0.03	0.03	-0.0225	0.0090	0.1244	0.0929	12	\rightarrow	2	15	the Develue
46	sloak	13	0.08	0.08	-0.0163	0.0646	0.1800	0.0991	11	\rightarrow	11	28	the Rsp2 value
47	dmoak	13	0.08	0.08	-0.0350	0.0468	0.1622	0.0804	10	\rightarrow	10	38	the higher up
48	acove	13	0.71	0.71		0.5863	0.7017	-0.0058	78	\rightarrow	-12	62	the slope, a
49	dmoak	13	0.17	0.17		0.0439	0.1593	-0.0069	43	\rightarrow	5	13	position not
\downarrow	\checkmark	\downarrow	\checkmark	\downarrow		\checkmark	\checkmark	\checkmark	\downarrow	\checkmark	\downarrow	\checkmark	considered
315	slpoh	13	0.83	0.83		0.0152	0.1306	-0.6999	3	\rightarrow	4	51	typical for
316	poh	13	0.92	0.92		0.0535	0.1689	-0.7513	4	\rightarrow	2	43	Acove

Figure 1: Zones based on maximum probability method.

Figure 2: Zones with one ecotone adjustment.

Plot data used for adjustment (stars) /

Changed to acove model

Figure 3: Ecological Zones with all ecotone adjustments.

Figures 4-6: Change in extent and producers accuracy in the upper Waynesville watershed from the maximum probability method through 100+ ecotone adjustments across the SBR (south) project area.

Appendix VI: Results and discussion all ecotone evaluation and Ecological Zone model adjustments

The procedure outlined in Appendix V was completed for the 'northend model', 'southend model', for each of the unique FLN landscapes (Northern Escarpment, New River Headwaters, Central Escarpment, South Mountains, Southern Blue Ridge Escarpment, Balsam Mountains, Nantahala Mountains, Smoky and Unaka Mountains), and for areas outside FLN landscapes having additional reference plots. Details of the model adjustments are listed in Tables 4-5 below. The following is a description and evaluation of these project area-wide adjustments.

Total adjustments: Adjustments of the ecotone between models can be evaluated from two perspectives; the total number of adjustments made within an Ecological Zone, and the total number of times that Ecological Zone was adjusted within other types. These are referred to as 'within type' and 'outside type' adjustments respectively (table 1). If both types of adjustments are considered, the Ecological Zones can be grouped into the following 4 ecotone adjustment categories (arranged from most to least adjustments within category):

Very many	Many	<u>A lot</u>	Few
Dry-Mesic Oak	Pine-Oak Heath	Northern Hardwood Slope	Alluvial Forest
Montane Oak (Slope)	Montane Oak (Cove)	Shortleaf Pine-Oak	Grassy Bald
Acidic Cove	Rich Cove	Northern Hardwood Cove	SL Pine-Oak Heath
	Dry-Oak/Evergreen Heath	Spruce-Fir	Heath Bald
	High Elevation Oak	Dry-Oak/Deciduous Heath	Floodplain
	Mixed Oak/Rhododendron		Montane Oak (Rich)

There were around 100 adjustments made in the initial and subsequent Dry-Mesic Oak Ecological zone models, 55 'within type' and 46 'outside type' (fig. 1), the most of all types. This type along with Montane Oak Slope and Acidic Cove, also had 'very many' adjustments, and account for well over one-third (40%) of the total acres in the 8 million+ project area (thus an extensive ecotone between other types) and certainly the reason for needing such a large number of adjustments. This is also true for Acidic Cove which had the most 'outside type' adjustments, and accounts for a significant portion of the total landscape (17% - the most extensive of all types), and because the type can occur in even narrow drainage areas that bisect most all 'upland' types, forming extensive ecotones and therefore 'confusion' between type boundaries.

The second category 'many' also accounts for about 40% of the landscape and includes the remainder of the most-extensive Ecological Zones except Shortleaf Pine-Oak. It also includes High Elevation Red Oak that occurs in only about 1% of the landscape but because of its landscape position (ridges and upper slopes) its extensive ecotone can be confused with numerous other types. The 3rd category 'a lot' accounts for about 15% of the landscape but most of this is within the Shortleaf Pine-Oak Ecological Zone (11%). Although there were a lot of adjustments made with this category, there were relatively fewer (about one-half) for Shortleaf Pine-Oak which accounts for roughly the same acreage as Montane Oak Slope and Dry-Mesic Oak, 2 types where the most adjustments were made. This is likely due to less confusion within Shortleaf Pine-Oak, and its occurrence on broader lower elevation landscapes with less evident ecotones. The remainder of the types in this category, however, occur at higher elevations and are either a finer definition of a broader type (northern hardwood, or dry-oak), and / or have more extensive ecotone. The fewest adjustments were made in rare Ecological Zones (Grassy Bald, Heath Bald, Montane Oak Rich, Shortleaf Pine-Oak Heath) that occur in distinct environments and are therefore less 'confused' with other types, or those that are more extensive on private lands (Alluvial Forest, Floodplain) and therefore have fewer reference plots to evaluate (Figure 1).

Figure 1: Ecotone adjustments within an Ecological Zone (within type) and the number of times that Ecological Zone was adjusted within other types (outside type).

Adjustments within and between types: Although not considered an ecotone adjustment, the greatest number of model changes was made to differentiate between Acidic Cove and Rich Cove Ecological Zones (17 shared 'within type' adjustments). Geology, stream-river distance, and slope position or landform shape were the most frequently used local environmental variables (used 5, 4, and 3 times respectively). The next most frequent adjustments were made between Dry-Mesic Oak (Dmoak) and Pine-Oak Heath (Poh), (16 total shared adjustments; 11 within Dmoak and 5 within Poh), and in differentiating between Dmoak and Shortleaf Pine-Oak (Sloak), (15 total shared adjustments: 6 within Dmoak and 9 within Sloak). Curvature, elevation, slope, and stream distance were the most frequent environmental variables used to refine the Dmoak and Poh ecotone boundary, while stream distance, geology, and elevation were the most frequent environmental variables used to refine the Dmoak and Sloak ecotone boundary. The number of different types within a specific Ecological Zone where ecotones were adjusted, not just the total number of adjustments, can also be used to identify taxa having more 'confused' map unit boundaries. Ecological Zones needing the greatest number of different types to be adjusted (greater than 10) within their preliminary models to improve accuracy included Montane Oak Slope, Montane Oak Cove, Mixed Oak/Rhododendron, Pine-Oak Heath, Rich Cove, and High Elevation Red Oak (table 1). Ecological Zones with the fewest number of types being adjusted within their preliminary model boundaries include most all 'rare' types such as Grassy Bald and SL Pine-Oak Heath.

The gain in accuracy within an Ecological Zone was generally related to both the total number of adjustments and the number of types within the Zone that were adjusted, i.e., the greater the adjustment the greater the gain. However, there are some important exceptions: 1) most of the 'rare' types had significant gains (greater than 30% points) in map unit accuracy with very few adjustments, 2) the 3 types having the greatest number of total adjustments and with at least 10 types needing to be adjusted within their boundaries had relatively modest accuracy gains (Dmoak a 15% point gain, Montane Oak Slope an 8% point gain, and Montane Oak Cove with only a 1% point gain), and 3) one type, Heath Bald actually showed a decline in accuracy from the initial to final model. Although few adjustments were made within this type, the reason for the accuracy loss is likely due to Heath Bald being extensively over-mapped in the initial model which resulted in a low omission error but a very high commission error (other types being confused with this type – see Appendix VII for more detail on error types).

Table 1: Within type adjustments

Tuble	1	ann cy	pe aaj	astinei	100															
	Dmoak	Mtslp	Mtcove	Dryever	Orhodo	Acove	Poh	Rcove	Hero	Sloak	Nhslope	Nhcove	Drydec	Sf	Alluv	Gbald	Hbald	Slpoh	Mrich	Flood
# adjusts	55	52	52	36	34	30	29	29	25	24	22	15	14	12	6	2	2	0	0	0
		-	-																	
0.	noh	2001/0	dmoak					2001/0		dmoak										
OT	μοπ	acove	unioak					acove		unioak										
	acove	nero	rcove																	
			acove																	
5-7	mtslp	rcove	mtslp	dmoak	acove	rcove	dmoak	nhcove	nhslope	acove	hero		poh							
	sloak	dmoak		mtslp							sf									
	rcove	nhslope		poh																
		noh																		
		pon																		
2.4	dia carran	a ala a al a		h e ne	h a na	dan anda	م ما م م	an tala	a a la	a la a la	ala a a co	-4	alua a a lu	a la a a con		- <i>f</i>		dan sala		
Z-4	uryever	0111000	uryever	nero	nero	UIIIOak	uryuec	musip	pon	sipon	nncove	51	UIIIOak	nncove	acove	51		umoak		
	drydec	dryever	sloak	acove	mtslp	mtcove	hero	dryever	dryever	dryever	gbald	hero		gbald	flood			sloak		
	mtcove	drydec	hero	nhslp	rcove	orhodo	mtslp	mtcove	nhcove	drydec		nhslope		nhslope						
	orhodo		poh	orhodo	dmoak	nhcove	sloak	nhslp	sf	poh		acove								
	slpoh		alluvial	rcove	poh	alluvial	acove		gbald			mtslp								
			orhodo		drvever	sloak	drvever		-											
					drydec		orhodo													
					mtcove		omouo													
-					intcove															
-					nncove															
					st															
1		mtcove	drydec	sf	nhslope	dryever	mtcove	dmoak	acove	rcove	acove	mtcove	mtslp	hero	rcove		hero		hero	alluvial
		nhcove	nhcove	sloak		sf	nhcove	hero	mtrich		hbald		orhodo	mtcove			sf		mtslp	
		mtrich					nhslp	orhodo	mtslp		mtslp		rcove	orhodo						
		cf					cf.	noh	orhodo		orhodo		sloak							
		51					51	of	rcove		onnouo		sidak							
								31	TCOVE											
			<i>(</i> 1)																	
0	alluvial	alluvial	flood	alluvial	alluvial	aryaec	alluvial	alluvial	alluvial	alluvial	alluvial	alluvial	acove	acove	dmoak	acove	acove	acove	acove	acove
	flood	flood	gbald	drydec	flood	flood	flood	drydec	dmoak	flood	dmoak	dmoak	alluvial	alluvial	drydec	alluvial	alluvial	alluvial	alluvial	dmoak
	gbald	gbald	hbald	flood	gbald	gbald	gbald	flood	drydec	gbald	dryever	dryever	dryever	dmoak	dryever	dmoak	dmoak	drydec	dmoak	drydec
	hbald	hbald	mtrich	gbald	hbald	hbald	hbald	gbald	flood	hbald	drydec	drydec	flood	dryever	gbald	drydec	drydec	dryever	drydec	dryever
	hero	sloak	nhslp	hbald	mtrich	hero	mtrich	hbald	hbald	hero	flood	flood	gbald	drydec	hbald	dryever	dryever	flood	dryever	flood
	mtrich	slpoh	sf	mtcove	sloak	mtrich	rcove	mtrich	mtcove	mtcove	mtcove	gbald	hbald	flood	hero	flood	flood	hbald	flood	hbald
	nhcove		slooh	mtrich	slooh	mtsln	slooh	sloak	sloak	mtrich	mtrich	hbald	hero	hbald	mtcove	hbald	hbald	hero	hbald	hero
<u> </u>	nhslone		5.00.1	nhcove	5.00.1	nhslp	5.00.1	sloop	sloop	mtsln	noh	mtrich	mtcove	mtrich	mtrich	hero	mtcove	mtcove	mtcove	mtcove
	of			clook		noh		зіроп	зіроп	nhcours	rcove	orbode	mtrich	mtclr	mtclr	mtcove	mtrich	mtrich	mtrich	mtrich
	51			sipon		pon				incove	rcove	ornodo	munich	musip	musip	mucove	munch	munun	munch	munun
					ļ	sipon				nnsiope	SIOak	pon	nncove	pon	nncove	mtrich	mtsip	mtsip	nncove	mtsip
										orhodo	slpoh	rcove	nhslope	rcove	nhslp	mtslp	nhcove	nhcove	nhslope	nhcove
										sf		sloak	sf	sloak	orhodo	nhcove	nhslope	nhslope	orhodo	nhslope
												slpoh	slpoh	slpoh	poh	nhslope	orhodo	orhodo	poh	orhodo
															sf	orhodo	poh	poh	rcove	poh
															sloak	poh	rcove	rcove	sf	rcove
															sloop	rcove	sloak	sf	sloak	sf
															5.001	sloak	slook	sloop	slook	sloak
																sloak	sipon	sipul	sipon	slook
																sipon				sipon
North	30	26	19	16	13	14	11	8	9	16	10	8	7	4	3	1	0	6	2	0
South	25	26	33	20	21	16	18	21	16	8	12	7	7	8	3	1	2	0	0	1
# types	10	13	12	10	12	9	12	11	11	7	8	6	6	6	3	1	2	2	2	1
gain %	+15	+8	+1	+12	+6	+20	+37	+13	+33	+12	+23	+32	+21	+39	+13	+30	-10	+82	+35	+6

The 'north' and 'south' models did not always have the same Ecological Zone boundary issues and they were usually but not always related to the different size of the areas, i.e., the 'south' model is 8% larger and thus would logically have more adjustments. For example, Shortleaf Pine-Oak had ½ as many adjustments in the 'south' model but was nearly twice as common (acre extent) there. This could reflect the more extensive and/or more intact nature of this system, especially in Georgia and South Carolina, which could improve reference plot accuracy and therefore model accuracy. Five types had as much as twice the number of adjustments in the 'south' as in the 'north' model areas. They included Pine-Oak Heath, Montane Oak Cove, Mixed Oak/ Rhododendron, Rich Cove, and High Elevation Red Oak. There are many reasons for this, some of which could be DTM accuracy or modeling nuances. Pine-Oak Heath is more distinctive and more extensive in the 'north' area, especially around Linville Gorge and in Tennessee and therefore may have been easier to reference in the field and less difficult to model. High Elevation Red Oak (Hero) and Rich Cove (Rcove) **are** more extensive in the 'south' area (2-times as much Hero, 24% more Rcove) which probably explains most of the reason for greater adjustments there. Both Montane Oak Cove (Mtcove) and Mixed Oak/Rhododendron (Orhodo), however are much more common in the 'north' (nearly 2 times more extensive there) but needed fewer adjustments (13 north vs. 21 south for Orhodo, 19 north vs. 33 south for Mtcove, table 1), and they have roughly the same number of reference plots, respectively. One possible explanation for this discrepancy is that the concept (what the reference type looks like in the field), for both types, has undergone revision since the 1995 start of Ecological Zone mapping in the Appalachians; this could have differentially affected reference plot accuracy and therefore model accuracy in the different areas. There are certainly other explanations, but they are beyond th

Variables used in adjustments: DTM frequency of use can be grouped into the following categories that describe local environments:

Most frequent (40+) Stream distance (strdist) Surface curvature (curve) Elevation (elev) Aspect (aspect) <u>Frequent (32-35)</u> Relative slope position (rsp) Slope (slope) River distance (rivdist) Less Frequent (12-19) Valley position (vpos) Mafic geology (geo2) Landform shape (Ifshape) Landform index (Ifi) Precipitation (prec) Least Frequent (less than 12) Siliciclastic geology (geo3) Mixed geology (geo6) Terrain moisture index (trmi) Carbonate geology (geo1) Relief (rel) Slope length (slen) Sulfidic geology (geo4) Ultramafic geology (geo7)

Topographic/environmental variables used most frequently to describe local environments that might refine ecotone boundaries between types were clearly fine-scale (from a mapping perspective) and included: stream distance, curvature, elevation, and aspect (fig. 2). These variables were used 40+ to 50+ times each in the over 400 adjustments made between the preliminary and final Ecological Zone models (table 3). A combination of fine- and mid-scale variables that include relative slope position, slope, and river distance were frequently used. Less and least frequently used were mid-scale variables. This contrasts greatly from variables used in the original Maxent models for each type. While aspect, slope, and curvature were used frequently to adjust ecotone boundaries (over ½ of the models used these variables), they had at least a 5% contribution to prediction gain in less than 12% of the Maxent models (table 2). Similarly, terrain relative moisture index, and slope length, which seldom provided even a 2% gain in Maxent models (table 5, report), were used in at least 30% of the models for ecotone adjustments. Conversely, carbonate geology, sulfidic geology, and relief which had significant contributions in Maxent were among the least frequently variables in the ecotone adjustments.

Figure 2: Environmental variables (DTMs^{1/}) used in Ecological Zone ecotone adjustments.

Table 2: Comparison of environmental variable use in ecotone adjustments

vs. waxe	int models		
Variable ^{1/}	Ecotone adjustments	Maxent models 1/	% difference
	% of types va	ariable used	III variable use
aspect	65	8	57
slope	65	11	54
curvature	55	3	52
strdist	75	32	43
vpos	65	22	43
trmi	40	0	40
rsp	60	22	38
rivdist	65	32	33
precip	40	8	32
lfi	35	5	30
slength	30	0	30
lfshape	45	22	23
umaf_geo	10	0	10
elev	75	68	7
mafic_geo	40	35	5
silic_geo	35	32	3
mix_geo	40	46	-6
sulf_geo	25	46	-21
relief	30	54	-24
lime geo	40	68	-28

^{1/} where variable made at least a 5% contribution to prediction gain

Variables used within Ecological Zones: The most variables were used (greater than 10) for ecotone adjustments in Dry-Mesic Oak, Acidic Cove, Rich Cove, Pine-Oak Heath, Montane Oak Slope, Montane Oak Cove, Shortleaf-Oak, and Mixed Oak/Rhododendron (table 3). Stream distance, curvature, slope, and elevation were the most frequently used variables for adjusting these models.

Variable ^{1/}	#	#	Dmoak	Mtslp	Mtcov	Dryeve	Acove	Rcove	Poh	Orhodo	Hero	Sloak	Nhslp	Nhcov	Drydec	Sf	Alluv	Gbald	Hbald	Flood	Mrich	Slpoh
Variable	adj.	types				num	nber of a	djustmen	its made	for the to	op 6 varia	bles used	d in a leas	st 2 adjus	tments (indicate 	s other a	djustmer	nts)			
strdist	52	15	6	8	7	6	4	6	3	3	2	5	-	2	2		3			-		
curvature	51	11	10	8	7	6	6		4			3	4	2	-	2						
elev	44	15	5	-	-	4	3	3	4	3	-	2	3	-	-	-			2			
aspect	41	13	-	7	-	3	2		-	-	4	2	3	2	3	-						
rsp	35	12	5	-	-	3	1	-		-	6	3		2	-	-						
slope	33	13	4	4	4	-	3	-	3	4	2		4		2		-	-				
rivdist	32	13	-	-	4	-		5	-	4	3	-			-	2	-	-				
vpos	19	13		-	-		-	-	2	-	-	-	2	-	-	-	-					
mafic_geo	18	8	-	3			2	3		-		-				-						
lfshape	16	9	4	-	-		1	2	-			2				-						
lfi	13	7	-	-	-	-	1	-	3	3				2								
precip	13	8	-					-		-	-											
silic_geo	11	7	-	-		-		2	-			1				2						
mix_geo	10	8	-	-	-	-	1	-	-		2	1										
trmi	10	8	-				-	-	-	-	-				-							
lime_geo	9	8	-	-	-		-	-	-					-	-							
relief	8	6	-		-							-		-								
slength	7	6	-				1	-	-	2				-								
sulf_geo	4	5										-										
umaf_geo	3	2	-													-						
Total	429	20	55	52	52	36	30	29	29	25	24	24	22	15	14	12	6	2	2	1	0	0
Total Var	riables	used	18	14	13	10	15	15	14	12	10	13	6	10	10	10	4	2	1	1	-	-

1/ Rsp = rsp1, rsp2; Aspect = aspr, aspc, solar; Curve = curve, curvepl, curvepr, tsi; Strdist = dstream, sdiff; Rivdist = driver, rivdiff; Lfshape = lfm10, lfm30

EZONE	Gbald	SF	NhS	NhC	Acov	Orho	Rcov	Alluvial	Flood	Hero	MonR	MonS	MonC	Dmoak	DryE	DryD	Poh	Sloak	Total
total	1	4	10	8	14	13	8	3	0	9	0	26	19	30	16	7	11	16	195
Asp_r						dmoak							rcove			poh		slpoh	4
Asp_c			hero										alluvial					dmoak	3
Curve			nhcove			drydecid						acove		acove		poh			5
Curpl				nhslope		acove									dmoak		dryever acove dmoak		6
Curpr			hero	sf								acove		acove	orhodo				5
Dstrm			acove		rcove					dryever			rcove dmoak acove	montslp	montslp			dmoak	9
Driver							acove					orhodo dmoak dryever	poh						5
Elev					orhodo		sf acove					acove hero	poh montslp dmoak	slpoh poh	acove orhodo hero		drydecid		14
Geo1				hero	alluvial								rcove						3
Geo2			sf		montcov		montcov					poh drydecid rcove	acove dmoak						8
Geo3		nhslope												sloak slpoh				poh	4
Geo6					dmoak							dmoak poh		slpoh	poh		montslp	dryeve	7
Lfi						acove poh rcove													3
Lfm10			sf									rcove		drydecid					3
Lfm30					alluvial		acove						dryever	poh				acove slpoh	6)
Precip												hero	montslp	montslp					3
Relief				hero	rcove									orhodo				dryever	4
Rivdiff							acove					poh orhodo drydecid	rcove	sloak	dmoak				7
Rsp1		gbald								poh		hero acove montcov		acove rcove		sloak		acove dmoak	10
Rsp2				montslp	rcove					mtrich nhslope		nhslope		acove poh	montslp			acove	9
Slength			gbald	sf		poh								dryever					4
Slope	sf		montslp		alluvial orhodo	poh dryever	nhcove	rcove		sf montslp		sf montrich	acove	orhodo poh acove dryever	dmoak montslp poh	dmoak	hero orhodo dmoak		24
Solyr		nhcove	nhcove		moncove					sf		nhslope acove		acove poh mtcove	poh				10
Solgw																			0
Stmdiff				acove	sloak	montslp montcov		acove		poh			acove montslp	poh drydecid	poh	rcove	montslp	dmoak slpoh acove	16
Trmi														dryever	dmoak	poh			3
Tsi					dmoak	hero	orhodo							dryever poh			dmoak	rcove	7
Vpos		gbald	sf	acove	nhcove	rcove		floodpl		nhcove		hero	alluvial		acove	poh	drydecid	acove	13
n_north	1-sf	2-gbald 1-nhslp 1-nhcove	3-sf 2-hero 2-nhcov 1-acove 1-gbald 1-mslp	2-sf 2-hero 2-acove 1-mslp 1-nhslp	3-rcove 3-alluvial 2-oakrho 2-dmoak 2-mtcov 1-ntcove 1-sloak	3-poh 2-acove 2-rcove 1-dryeve 1-hero 1-mtsip 1-mtcov 1-dmoak 1-drydec	4-acove 1-nhcov 1-mtcov 1-sf 1-orhod	1-flood 1-acove 1-rcove		2-sf 2-poh 1-mtslp 1-mtrich 1-nhslp 1-nhcov 1-dryeve		5-acove 4-hero 3-poh 2-nhylp 2-drydec 2-drydec 2-drwak 2-orhod 2-rcove 1-mtcov 1-dryeve 1-sf 1-mtrich	4-rcove 4-acove 3-dmoak 3-mtslp 2-poh 2-alluv 1-dryeve	7-poh 6-acove 4-dryeve 3-slpoh 2-sloak 2-orhod 2-orhod 2-mtslp 2-drydec 1-rcove 1-mtcov	4-dmoak 4-poh 3-mtslp 2-acove 2-oakrho 1-hero	4-poh 1-sloak 1-dmoak 1-rcove	3-dmoak 2-drydec 2-mtslp 1-acove 1-dryever 1-hero 1-oakrho	5-acove 4-dmoak 3-slpoh 2-dryeve 1-poh 1-rcove	33-acove 26-poh 18-dmoak 14-mtslp 15-rcove 11-dryever 11-hero 10-sf 10-oakrho 7-drydec 6-nhcov 6-slpoh 6-montcov 5-alluvial 5-nhslope 4-sloak 3-gbald 2-mtrich 1-flood

Table 4: Number of times variable was used in local environment / ecotone adjustment – Northend model.

Table 5. Number of times variable was used in local chvironinent / ecotone adjustment, southend mode	Table 5: Number of times variable was used in local environment	/ ecotone adjustment. Southend model
--	---	--------------------------------------

10010 01				Varias		5 4500				iene /			jastin	ciii, 50	Jatilei					
EZONE	Gbald	SF	NhS	NhC	Acov	Orho	Rcov	Alluvial	Flood	Hero	MonR	MonS	MonC	Dmoak	DryE	DryD	Poh	Sloak	heathb	Total
total	1	8	12	7	16	21	21	3	0	16	0	26	33	25	20	7	18	8	2	244
Asp_r												dmoak	sloak		dmoak					3
												hero rcove	mtslope dmoak		hero	mtslope				
Asp_c					nhcove							dmoak poh	sloak dryever		mtslope	poh	drydecid			14
Curve		hero	orhodo		mtcove					poh		acove	sloak	poh				drydecid		13
Curpl		gbald			sf	nhcove						poh	hero	rcove	nhslope			unioak		12
Curpr		-			rcove	mtcove						nero	mtslope	acove	hero					8
curpi					10070	hero	poh					moope	dmoak		rcove					0
Dstrm					nhcove		dryever mtslope nhcove					rcove	orhodo	poh mtslope		orhodo		dmoak		11
Driver		nhslope nhcove				nero rcove mtslope acove	dryever acove	acove		nhslope dryever sf		dryever	poh			poh		dmoak		16
Elev		mtcove	nhcove sf gbald	nhslope	orhodo dryever	dmoak sf nhcove	nhslope			gbald			dmoak dryever sloak hero	dryever sloak mtslope	nhslope poh hero	dmoak	dryever nhcove dmoak	poh dmoak	sf hero	29
Geo1							dmoak					rcove	dmoak	rcove		dmoak	sf			6
Geo2					rcove		nhcove					rcove	acove	mtcove	dmoak			dmoak		10
Geo3		orhodo					mtslope					orhodo	rcove	sloak			sloak			7
Geo4							acove					hero	nhcove				nhslope	drydecid		5
Geo6							hero			rcove										3
Geo7		nhcove								nnsiope				acove						3
				cf										rcove			dmoak			
Lfi			hero	nhslope	montcov							acove		dryever			mtcove hero			10
Lfm10		nhcove					acove							sloak orhodo			mtslope			5
Lfm30					dmoak								dmoak							2
Precip			hero			mtslope	nhcove			acove gbald		nhslope dryever	acove mtslope		mtslope					10
Relief												hero		mtslope poh			sloak			4
Rivdiff	sf						nhcove							sloak			hero			4
Rsp1						acove				nhslope		acove	drydecid	mtslope	acove					8
Rsp2				mtcove		acove	mtcove			nhcove		drydecid			molope					8
Slength					rcove	hero	acove			uryever		rcove	rcove							3
Slope			hero nhcove		dmoak	mtslope							dryever			poh				9
Solyr			heatbald sf	hero sf		nnsiope				nhcove nhslope		dmoak	ornodo							7
Solgw										orhodo										0
Stendiff				mtslope		daudaaid	nhelene	floodpl				phonus		nah	poh		hero			14
Trmi				incsiope	nhcove	rcove	mtslope	acove		noh		Incove	acove	pon	dmoak		sloak drydecid			7
Tei	-		have		incove	sf	molope			pon				mtslope	pon		orhodo			6
151			nero			dmoak							rcove	mtcove	mtsiope					
Vpos			sf										dmoak hero		sf		acove			6
total	1-sf	3-nhcove 1-mtcove 1-nhslope 1-orhodo 1-hero 1-hero 1-gbald	4-hero 3-sf 2-nhcove 1-heat 1-gbald 1-orhodo	2-sf 2-nhsip 1-hero 1-mtsip 1-mtcov	4-rcove 3-nhcov 2-dmoak 2-mtcov 2-orhod 1-sloak 1-sf 1-dryever	3-acove 3-mtslp 3-hero 2-dmoak 2-sf 2-nhcove 2-rcove 1-mtcov 1-dryd 1-drye 1-nhslp	6-acove 4-nhcov 3-mtslp 2-nhslp 2-dryev 1-mtcov 1-hero 1-poh 1-dmoak	2-acove 1-fid		4-nhslp 2-phcov 2-dryev 2-gbald 1-sf 1-orhod 1-acove 1-rcove		5-rcove 4-hero 3-dmoak 3-acove 3-nhslp 2-orhodo 2-dryeve 2-poh 1-nhcove 1-drydec	6-dmoak 5-rcove 4-sloak 3-mtslp 3-dryeve 3-hero 2-orhod 1-nhcov 1-drydec 1-poh	5-mtsip 4-poh 4-sloak 4-rcove 3-acove 2-dryeve 2-dryeve 2-mtcov 1-orhodo	3-dmoak 3-poh 3-hero 4-mtsip 2-nhsip 2-rcove 1-sf 1-sloak 1-acove	3-poh 2-dmoak 1-orhod 1-mtsip	3-hero 3-sloak 2-drydec 1-oakrho 1-mstp 1-moncov 2-dmoak 1-nhslp 1-sf 1-dryeve 1-nhcov	5-dmoak 2-drydec 1-poh i	1-ST 1-hero	24-bero 24-acove 23-rcove 21-rntslope 19-nhcove 17-poh 16-nhslope 14-dryever 13-sloak 13-sf 12-orhodo 9-mtcove 7-drydecid 4-gbald 1-heat 1-ford

Appendix VII: Accuracy Evaluation

Accuracy assessments are essential parts of all vegetation mapping projects but they are time-consuming and expensive especially in mixed ownerships. They provide the basis to compare different map production methods, information regarding the reliability and usefulness of the maps for particular applications, and the support for spatial data used in decision-making processes. It is useful to evaluate accuracy relative to the aerial extent of each class. For example, when a particularly common class (e.g., 10-15% of the map area) has either a very high or a very low accuracy it has a disproportionate effect on the utility of the map for general analysis applications without a corresponding effect on the overall accuracy assessment. Conversely, a relatively rare type (e.g., < 1% of the map area) regardless of its accuracy has relatively little effect on the utility of the map for general analysis applications but has the same effect on the accuracy assessment as the common type.

A true accuracy assessment was not completed for this project, hence the title "Accuracy Evaluation". However, the same procedure was followed, i.e., a comparison was made of reference data for a site to categorized (classified, modeled) data (map units) on the same site. A quantitative accuracy assessment depends on the collection of reference data. Reference data is known information of high accuracy (theoretically 100% accuracy) about a specific area on the ground (the accuracy assessment site). The assumed-true reference data can be obtained from ground visits, photo interpretation, video interpretations, or some combination of these methods. In a map unit accuracy assessment, sites are generally the same type of modeling unit used to create the map. In a true field accuracy assessment, the evaluation would be made around randomly generated points on the ground or more realistically within a 'stand' or other reasonable-size area (ground truthing).

Error Matrix

The error matrix (tables 1, 2) below are a square array in which accuracy assessment sites are tallied by both their classified category and their actual category according to the reference data. For this study, the columns in the matrix represent the classified Ecological Zone map units, while the rows represent the reference data; this is a non-traditional approach in arranging the error matrix. The major diagonal, highlighted in the following table, contains those sites where the classified data agree with the reference data. The nature of errors in the classified map can also be derived from the error matrix. In the matrix, errors (the off-diagonal elements) are shown to be either errors of inclusion (commission errors) or errors of exclusion (omission errors). High errors of omission/commission between two or more classes indicate spectral confusion between these classes.

Omission error is represented in the off-diagonal vertical cells (columns). An example of an error of omission is when pixels of a certain thing, for example maple trees, are not classified as maple trees. This accuracy measure indicates the probability of a reference pixel being correctly classified.

Commission errors are shown in the off-diagonal matrix cells that form the horizontal row for a particular class. An example of an error of commission is when a pixel reports the presence of a feature (such as trees) that, in reality, is absent (no trees are actual present). This accuracy measure is indicative of the probability that a pixel classified on the map actually represents that category on the ground.

The following measures of accuracy were derived from the Ecological Zone error matrix.

Overall Accuracy, a common measure of accuracy, is computed by dividing the total correct samples (the diagonal elements) by the total number of assessment sites found in the bottom right cell of the matrix.

Producer's Accuracy, which is based on omission error, is the probability of a reference site being correctly classified. It is calculated by dividing the total number of correct accuracy sites for a class (diagonal elements) by the total number of reference sites for that class found in the right-hand cell of each row (Story and Congalton 1968). Producer's accuracy indicates how many times an Ecological Zone on the ground was identified as that Ecological Zone on the map.

User's Accuracy: the total number of correct pixels in a category divided by the total number of pixels that were classified in that category (commission error). This is the probability that a pixel classified on the map actually represents that category on the ground; also called reliability.

#		1	27	2	3	4	29	5	6	23	8	24	9	28	13	10	11	16	18	31	30	total	% corr.
1	sf	147	1	6	7	4					1											166	89%
27	gbald	4	25	3							2											34	74%
2	nhslope	5		153	18	2	3	2			18		6	2					2			211	73%
3	nhcove	4		13	266	18	2	15			8		4	1					1			332	80%
4	acove	1		5	11	954	24	79	6		2		10	25	39	6	1	7	4	1		1175	81%
29	orhodo	1		2	2	18	154	6			3		7	9	10	4	5	1	5			227	68%
5	rcove				3	75	7	622			4		21	15	11	4	1		2			765	81%
6	alluv					14			65	3				1								83	78%
22	floodplain								2	18					1							51	0/%
25	поофіант								2	40					1							51	5478
8	hero	3	1	13	12	1	5	3			314		17	2	1	3			11			386	81%
24	mont_rich			1							4	9										14	64%
9	montoakslope			5	3	5	12	15			9		279	6	13	13	1		11			372	75%
28	montoakcove				2	11	5	13	1				3	127	14	2	2	2	3			185	69%
13	dmoak					28	8	7	2				14	24	442	31	6	16	21	1		600	74%
10	dryoakEheath					6	5	4			7		10	4	13	158	2	8	11	1		229	69%
11	dryoakDheath						2	1						1	3	3	73	3	8			94	78%
16	sloak					5	1						1	2	18	3		246	5			281	88%
18	noh					5	6				5		8	4	28	17	18	15	468			574	82%
21	shoh					1									1	1	10	10	1	36			82%
20	hanthald	2				1									1	1		4	1	50		44	740/
30	neatribaid	2																	3		14	19	74%
	TOTAL correct	147	25	153	266	954	154	622	65	48	314	9	279	127	442	158	73	246	468	36	14	4600	79%
	total column	167	27	201	324	1147	234	767	76	51	377	9	380	223	594	245	109	302	556	39	14	5842	
	% correct Most fire-a	88% dapted	93% = 93%	76% % corre	82% ect. Le	83% ast fire	66% e-adap	81% ted =	86% 92% c	94% orrect	83%	100%	73%	57%	74%	64%	67%	81%	84%	92%	100%		

Table 1: Evaluation of Ecological Zones in the SBR 3rd approximation study area from 5,842 field plots

	··· -· -· ··· ·· ·· ·· ·· ·· ·· ·· ·· ··	-0												-	
#		27	1	2	4	6	23	8	9	13	10	16	18	total	correct class
27	Southern Appalachian Grass and Shrub Bald	39	6	3				2					3	53	74%
1	Central and Southern Appalachian Spruce-Fir Forest	1	147	13	4			1						166	89%
2	Southern Appalachian Northern Hardwood		9	450	42			26	13				3	543	83%
4	Southern and Central Appalachian Cove Forest		2	23	1939	6		9	87	60	21	9	11	2167	89%
6	Central Interior and Appalachian Riparian Systems				14	65	3		1					83	78%
23	Central Interior and Appalachian Floodplain Systems					2	48			1				51	94%
8	Central and Southern Appalachian Montane-Oak	1	2	25	8			314	19	1	3		11	384	82%
9	Southern and Central Appalachian N. Red Oak-Chestnut Oak			11	61	1		13	424	27	18	2	14	571	74%
13	Southern Appalachian Oak Forest				43	2			38	442	37	17	21	600	74%
10	Allegheny-Cumberland Dry Oak Forest and Woodland				18			7	15	16	236	12	19	323	73%
16	Central Appalachian Low-Elevation Pine				7				3	19	4	286	6	325	88%
18	Southern Appalachian Montane Pine Forest and Woodland				11			5	12	28	35	15	468	574	82%
	TOTAL Correct ^{2/}													4858	83%

Table 2: Evaluation of Biophysical Settings / Ecological Systems in the 3rd approx. SBR study area from 5,842 field sites ^{1/}

^{1/} rows are reference (field plot) data, columns are classified (modeled) data, ^{2/} Total Correct percent = 4858 (correctly modeled field plots / 5842 (total field plots)

Map unit	Source	ROCKTYPE_1	ROCKTYPE_2	acres
		CARBONATE-BEARING RO	CKS – group 1	
Cc3	TN001	shale (calcareous)	limestone	1,531
Ccl2	TN001	flaky clay shale, shaly limestone lenses	stromatolitic (algae gw) limestones	863
Ccr	TN001	dolostone (dolomite)	chert	2,038
Ccu2	TN001	limestone	dolostone (dolomite)	2,465
Chk	TN001	dolostone (dolomite)	limestone	15,016
Cmn	TN001	limestone	dolostone (dolomite)	317
Cs1	NC002	dolostone (dolomite)		3,031
Cs2	TN001	dolostone (dolomite)	limestone	76,657
Mgg	TN001	limestone	shale	8,389
Oa	TN001	calcareous, graptolitic shale (fossils)	calcareous sandstone, siltstone, conglom	8,528
Oc	TN001	dolostone (dolomite)	limestone	260
OCk	TN001	dolostone (dolomite)	limestone	64,871
Oh	TN001	limestone	shale	1,916
Olv	TN001	dolostone (dolomite)	limestone	1,078
On	TN001	dolostone (dolomite)	limestone	3,156
Onc	TN001	dolostone (dolomite)	limestone	6,174
Oo	TN001	calcareous shale	fossiliferous limestone	4,919
Osv	TN001	calcareous shale, limestone	sandstone	50,096
		MAFIC SILICATE ROCKS	– group 2	
am	NCguad	amphibolite		15.422
am1	NCguad	amphibolite	biotite granitic gneiss	474
am2	NCguad	amphibolite	biotite hornblende migmatite	230
ams	NCguad			1.187
bag2	NCguad	biotite augen gneiss	biotite hornblende migmatite	1,047
bg	NCguad	biotite gneiss	muscovite-biotite gneiss, biotite schist	18.540
bg1	GA001	biotite gneiss		98,802
bg2	NCguad	biotite gneiss	amphibolite, biotite hornblende	707
bg3	NCquad	biotite gneiss	amphibolite, quartzite, calc-silicate	199
bgb	NCquad	metagabbro, metadiabase		313
bgg1	NCquad	biotite granitic gneiss	amphibolite, hornblende migmatite	12,980
bggs	NCquad	biotite-muscovite gneiss and schist	biotite-muscovite gneiss, mica schist, a	9,621
bgn	NCquad	biotite granitic gneiss	lenses-bands of amphibolite, pegmatite p	297
bgs	NCquad	biotite gneiss, pelitic schist,	amphibolite, calc-silicate granofels	968
bhg2	NCquad	biotite hornblende migmatite	biotite hornblende gneiss	827
bhgb	NCquad	hyperstene metagabbro		1,431
bhm2	NCquad	biotite hornblende migmatite	amphibolite, biotite-hornblende-gneiss	13,150
bogb	NCquad	metaolivine gabbro	grades outward to amphibolite	830
bpg	NCquad	biotite paragneiss and schist	biotite-plagioclase-quartz gneiss	8,618
bs	NCquad	biotite-muscovite mylonite gneiss	biotite schist,w/plagioclase porphyrobla	7
bw	NCquad	biotite metasandstone	granitic and pegmatitic lenses, mudstone	7,422
ck	NCquad	mafic-ultramafic complex of Carroll knob	amphibolite, hornblende-gneiss	3,891
ckg	NCquad	metagabbro units at Carroll knob	labradorite, hornblende	37
cmy	NCquad	calcareous mylonite (Brevard zone)		0
crp	NCquad	biotite-garnet schist, pelitic schist	metaorthoquartzite, metasandstone	891
CS	NCquad	calc-silicate (85% quartz and feldspar)	15% amphibole	1,661
cs1	NCquad	calc-silicate	biotite granitic, amphibolite	291
cs2	NCquad	calc-silicate	biotite hornblende migmatite	17
cs3	NCquad	calc-silicate	diopside lenses	136
csam2	NCquad	amphibolite and calc-silicate		1,078
CZab	NC002	amphibolite	biotite gneiss	56,291
CZam	NC002	amphibolite	basalt	531
CZba	NC002	megacrysitic biotite gneiss	and quartz, local micaschist, amph, biog	9,526
CZbf	NC002	biotite gneiss	amphibolite	1,092
CZbg	NC002	biotite gneiss and schist	interlayed with calc-silicate rock	391,055
CZbg	SC001	biotite gneiss and schist	interlayed with calc-silicate rock	928
CZpg	NC002	biotite gneiss		35,130
CZpg	SC001	biotite gneiss		19,502
CZsg	SC001	biotite gneiss	schist	63,016
CZwa	SC001	mafic gneiss	amphibolite	119,735

Appendix VIII: Geology grouping and mapunit details.

K-Quad gab/tor(joivine-puroxent-hornblende) plagicose) Q ggn Hatcher biotite-muscovite granitie gneiss locally hornblende 10.391 httpg.I N-Quad biotite-muscovite granitie gneiss hornblende-biotite gneiss 256 httpl.I N-Quad hornblende pneiss 1.106 httpl.I N-Quad hornblende gneiss 1.106 httpl.I N-Quad hornblende migmatte hyperstene-blocite hornblende gneiss 1.14 httpl.I N-Quad biotite gneiss (layered) xenolitis (malic gneiss) 1.08 gn N-Quad marble 1.1283 72 7 m N-Quad marble 1.1283 72 7 7 m N-Quad marble and biotite gneiss (layered) xenolitis (layered) xenolitis (layered) 1.160	fg3	GA001	biotite gneiss	mica schist	495
gb NGquad metagabbro (pyroxene, hornblende, plagn) plagic(ase) [0.33] http:// http:// NGquad bottle granitic gneiss hornblende-biotte gneiss 265 http:// NGquad hornblende gneiss biotte granitic gneiss 1.106 http:// Ntrol NGquad hornblende migmatite biotte granite, amphibolite 5.545 http:// Ntrol NGquad bornblende migmatite hyperstene-plagnociase magnetite, hornblende, plasiti 1.106 http:// Ntrol NGquad biotte prante gneiss (layreed) xenotiths (mafic gneiss) 1.018 lig NGquad biotte printe gneiss (layreed) xenotiths (mafic gneiss) 1.018 lig NGquad biotte printe gneiss biotte hornblende migmatite 1.209 mma GA001 amphibolite and biotte-muscoute gneiss, calc-sill 7.20 mma GA001 amphibolite gneiss and biotte-muscute gneiss 3.097 mma GA001 amphibolite and amphibole gneiss 3.097 pCan NCquad amphibolite and amphibole gneiss 3.097	g	NCquad	gabbro(olivine-pyroxene-hornblende)		2
Iggn Hatcher biotite-muscovite granitite gneiss locally hormblende 10.391 hbgg1 NCquad hormblende biotite gneiss 26 hbm1 NCquad hormblende biotite gneiss 1106 hg NCquad hormblende gneiss 1106 hgn NCquad hormblende gneiss 15,555 hmg1 NCquad hormblende migmatte hypersteme-biotite hormblende gneiss 14 hyph1 NCquad biotite presteme-plagrociase magnetite, hormblende, biotite 61 lg TN001 perdotite diorite 61 13 lg NCquad biotite gneiss layered) xenolitis (malf, eneiss) 108 mm3 CA001 amphibolite 410 140 mm3 GA001 amphibolite and amphibolite gneiss amphibolite 118 pCaa NCquad amphibolite gneiss 3.007 131 pCaa NCquad amphibolite and amphibole gneiss 3.007 131 pCam NCquad biotite schist <td>gb</td> <td>NCquad</td> <td>metagabbro (pyroxene, hornblende,</td> <td>plagioclase)</td> <td>4</td>	gb	NCquad	metagabbro (pyroxene, hornblende,	plagioclase)	4
Inbgr.1 NCquad biotite granitic graniss Participation Participation Participation Parity and the provided pression Parity and parity an	ggn	Hatcher	biotite-muscovite granitite gneiss	locally hornblende	10,391
Ibbnit NCquad hornblende gneiss 1353 Ing NCquad hornblende gneiss 1.106 Ingn NCquad hornblende gneiss 1.016 Ingn NCquad hornblende migmatite hipterstene-biotte hornblende gneiss 14 Inyla NCquad hornblende migmatite Inperstene-biotte hornblende gneiss 14 Inyla NCquad biotte-ionnblende migmatite Inperstene-biotte hornblende gneiss 16 Ing NCquad biotte-gneiss (algered) xenolths (margeriss) 108 Ingn NCquad marble 11283 11283 mm3 GA001 amphibolte 6436 2 pCaa NCquad amphibolte and amphibolte gneiss 3097 pCaa NCquad amphibolte and amphibolte gneiss 1001 2340 pCaa NCquad amphibolte gneiss, ranges to biotite schist 1001 2340 pCan NCquad biotite gneiss, ranges to biotite schist 1001 2340 pCan NCquad biotit	hbgg1	NCquad	biotite granitic gneiss	hornblende-biotite gneiss	26
Ing NCquad homblende gneiss 1.106 Ing NCquad homblende magnetite gneiss biotite granite, amphiboilte 31 Inybiz NCquad biotite homblende migmatite hyperstene-biotite homblende gneiss 14 Inypiz NCquad biotite magnetite gneiss magnetite, homblende, biotite 13 Ikg TNO01 peridotite dionite 61 Ikg NCquad biotite gneiss (layered) xenolitis (mafic gneiss) 108 Ikg NCquad magnetite-biotite gneiss biotite hornblende gneiss 90 mm1 GA001 magnetite-biotite gneiss amphibolite 11.08 mm3 GA001 amphibolite and amphibole gneiss amphibolite 11.08 pCan NCquad amphibolite and amphibole gneiss 100 100 pCan NCquad biotite schist includes/biotite,clinocosite, guart) 234 pCan NCquad biotite schist includes/biotite,clinocosite, guart) 234 pCan NCquad biotite schist	hbm1	NCquad	hornblende-biotite migmatite	biotite granitic gneiss	353
Ing.n. NCquad homblende magnetite gneiss institute grante, amphibolite 5545 Inybh2 NCquad biotite-homblende magnetite gneiss higt magnetite, institute homblende gneiss 114 Inybh2 NCquad biotite-homblende migmatite hyperstene-biotite homblende gneiss 114 Inyb1 NCquad biotite gneiss (layered) xenolitis (maft gneiss) 108 Ilg NCquad biotite gneiss (layered) xenolitis (maft gneiss) 108 mm3 GA001 homblende gneiss and biotite muscovire gneiss, calc-sili 128 mm3 GA001 amphibolite 112,833 6,997 pCaa NCquad amphibolite and nomblende gneiss 31 pCaa NCquad amphibolite and nomblende gneiss 33 pCaa NCquad biotite schist & biotite schist & biotite schist & lootite mylonite gneis 31 pCaa NCquad biotite schist (composed of quart, plagicdase, play, muscovite mylonite gneis 3,152 pCaa NCquad biotite schist muscovite-biotitic schist 3,162	hg	NCquad	hornblende gneiss		1,106
Img1 NCquad Isorther ampetite geness Isorthe grante, amphtbolite 31 hybh2 NCquad biotte-hornblende migmatite hyperstene-biotte hornblende gneiss 14 hyp1 NCquad biotte-morbilende migmatite hyperstene-biotte hornblende gneiss 14 lig TN001 peridotte dionte 61 lig NCquad biotte gneis (syred) xenoliths (mafic gneiss), acle-sili 72 m NCquad mathe point 90 mm1 GA001 maphtbolite point 140 mm3 GA001 amphtbolite point 140 mm3 GA001 amphtbolite and amphtbolite gneiss amphtbolite 122 pCaa NCquad amphtbolite gneiss, ranges to biotite schist & crascs-biotite schist & biotite schist & biotite schist &	hgn	NCquad	hornblende gneiss		5,545
Typh2 NCquad biotite-hornblende nigmatite hypersteme-plageoclase magnetite, hornblende, biotite 114 hyp NCquad hypersteme-plageoclase magnetite, hornblende, biotite 61 lig NCquad biotite gneisis (layered) xenoliths (mafra gneiss) 108 m NCquad magnetite-holitite gneisis and biotite-nuscovite gneiss, calc-sili 72 m NCquad magnetite-holitite gneisis biotite-nuscovite gneiss, calc-sili 90 mm3 GA001 hornblende gneiss biotite hornblende migmatite 11,283 mp3 GA001 amphibolite and hornblende gneiss 0 2 pCaa NCquad amphibolite and hornblende gneiss 0 31 pCan NCquad biotite-schist includes/biotite_clinozoiste, guart) 234 pGan NCquad biotite gneiss, ranges to biotite schist (composed of quartz, plagioclase, function schist) 1520 pGan NCquad biotite gneiss, ranges to biotite schist (chis is cros-biotite schist) 3.162 pGan NCquad <td< td=""><td>hmg1</td><td>NCguad</td><td>hornblende-magnetite gneiss</td><td>biotite granite, amphibolite</td><td>31</td></td<>	hmg1	NCguad	hornblende-magnetite gneiss	biotite granite, amphibolite	31
hyp1 NCquad hyperstene-plageoclase magnetite, hornblende, biotite 114 lg TN001 peridotite diorite 114 lg TN001 peridotite diorite 116 lg NCquad biotite gness (quered) and biotite-muscovite gness, calc-sill 72 m NCquad magnetite-biotite gness biotite hornblende migmatite 23 mm1 GA001 amphibolite 1400 1400 mm3 GA001 amphibolite 22 2 pCaa NCquad amphibolite and amphibolite gness 3.097 pCam NCquad amphibolite gness, ranges to biotite schist 3.097 pCam NCquad biotite schist contex schist 3.097 pCam NCquad biotite schist contex schist 3.097 pCam NCquad biotite schist minor muscovite-biotite schist 3.197 pCa NCquad biotite schist contex schist 3.197 pCan NCquad biotite	hvbh2	NCguad	biotite-hornblende migmatite	hyperstene-biotite hornblende gneiss	14
Image: Instant Image: Ima	hvp1	NCguad	hyperstene-plageoclase	magnetite, hornblende, biotite	134
Ibg NCquad biotite gneiss (layered) xenoliths (mafic gneiss) 108 Ign NCquad biotite-plagiclase-quartz gneiss and biotite-muscovite gneiss, calc-sili 72 m NCquad mayhe 90 mbg2 NCquad magnette-biotite gneiss biotite hornblende migmatite 23 mm1 GA001 amphibolite 140 6436 p NCquad amphibolite and amphibole gneiss 31 mp3 GA001 amphibolite and amphibole gneiss 3.1 pCan NCquad mpolite-muscovite mylonite gneiss 1001 pCran NCquad biotite-muscovite mylonite gneiss 1001 pCran NCquad biotite schist includes/biotite,clinozoiste, quartz) 234 pCgn NCquad biotite schist includes/biotite,clinozoiste, quartz) 234 pCgn NCquad biotite schist includes/biotite,clinozoiste, quartz) 234 pCan NCquad biotite schist clorite schist 3,162 pgn NCquad	ig	TN001	peridotite	diorite	61
Iso NCquad biotite plagioclase-quartz gneiss and biotite-muscovite gneiss, calc-sili 72 mbg2 NCquad marble biotite hornblende gneiss biotite hornblende migmatite 23 mm3 GA001 amphibolite mn1 GA01 amphibolite 11.283 mm3 GA01 amphibolite and amphibole gneiss amphibolite 6,436 P NCquad amphibolite and hornblende gneiss 3,097 pCaa NCquad amphibolite and hornblende gneiss 3,097 pCaa NCquad biotite-nuscovite mylonite gneiss biotite schist 1001 pCcs NCquad biotite-schist includes/biotite, dincorosite, quartz) 234 pCgn NCquad biotite schist (this is cross-biotite schist) 1,128 pmS GA01 biotite schist or hylitite cross-biotite schist 3,162 pms NCquad porphryoblastic mylonite gneiss minor muscovite-schist 3,162 pmS GA01 biotite schist (this is cross-biotite schist 3,162	lbø	NCguad	biotite gneiss (lavered)	xenoliths (mafic gneiss)	108
am Ncquad marble biotite bioti	løn	NCguad	biotite-plagioclase-quartz gneiss	and biotite-muscovite gneiss, calc-sili	72
Image Nequat magnetite-biotite gneiss biotite hornblende migmatite 25 mm1 GA001 amphibolite amphibolite 140 mm3 GA001 amphibolite 140 6436 P NCquad amphibolite 6436 7 pCaa NCquad amphibolite and hornblende gneiss 30 3097 pCaa NCquad amphibolite and hornblende gneiss 0 31 pCca NCquad biotite schist includes(biotite,clinozoisite, quartz) 234 pCcs NCquad biotite gneiss, ranges to biotite schist (composed of quartz,plagioclase,bio,ms) 1,550 pm8 GA001 biotite schist mylonite schist & gneiss minor muscovite-biotite schist 31 p2zmb NCquad porphyroblastic mylonite schist & gneiss minor muscovite-biotite schist 36 PzZmma NCquad mosovite-chlorite schist or phyllite calcareous quartzite 387 PzZma NCquad amphibolite if retrogressed, then blotite schist 622 Yam2 <t< td=""><td>m</td><td>NCquad</td><td>marble</td><td></td><td>90</td></t<>	m	NCquad	marble		90
IntegrGotoIntegristic for the griessDescriptionDescrip	mbg2	NCquad	magnetite-hiotite gneiss	biotite hornblende migmatite	23
ImmaGA001Informbende gneissamphibolite11.285mp3GA001amphiboliteamphibolite11.285mp3GA001amphibolite and amphibolite gneiss2pCaaNCquadamphibolite and hornblende gneiss3.097pCbaTN001gabbrodioritepCcanNCquadbiotite and hornblende gneiss1.910pCcanNCquadbiotite schistincludes/biotite.clinozoisite, quart2)2.34pCgnNCquadbiotite schistcompaced of quartz.plagicolase, bioms1.550pgnNCquadbiotite schist(this is cross-biotite schist3.162pm8GA001biotite schistgenessminor muscovite-biotite schist3.162pm9NCquadbiotite schist mylonite schist & gneisscross-biotite schist3.162pm8GA001biotite schist or plulitecross-biotite schist1.289pm9NCquaduscovite-chiorite schist or plulitecross-biotite schist, metasand,metasilt7.3PZmbNCquadaluviumcalcareous quartzite387QailNCquadamphibolitefretorgressed, then biotite schist6.22Yam2NCquadbiotite augen gneissamphibolite, calc-silicate rock, marble493.924Yubg2NCquadbiotite hornblende gneissmingmatiti biotite-hornblende gneiss1.430Yubg2NCquadbiotite granitic gneiss & biotite gneissamphibolite, calc-silicate granofels245Yubg2NCquadbiotit	mm1	GA001	amphipolite		140
mp3 GA001 amphibolite 14,203 pCaa NCquad amphibolite and amphibole gneiss 2 pCan NCquad amphibolite and amphibole gneiss 31 pCan NCquad amphibolite and amphibole gneiss 31 pCan NCquad biotite-succentre gneiss 190 pCan NCquad biotite-succentre gneiss 101 pCcs NCquad biotite-succentre gneiss 101 pCgn NCquad biotite-glagicolase-quartz gneiss minor muscovite-biotite schist 31.62 pms8 GA001 biotite-schist de gneiss minor muscovite-biotite schist 31.62 pms9 NCquad biotite-glagicolase-quartz gneiss minor muscovite-biotite schist 31.62 pms9 NCquad morphynoblastic mylonite schist & gneiss 6.681 33.62 pr2mma NCquad muscovite-chlorite schist or phyllite cross-biotite schist 62 Ya NCquad amphibolite calict to dolomitic marble calicareous quartzite 387 Yam2 NCquad amphibolite migmatic biotite-hornblend gneiss 13.482	mm3	GA001	hornblende gneiss	amphibolite	11 283
The period Difference Difference <thdifferenc< th=""> Differenc Differenc<</thdifferenc<>	mn3	GA001	amphibolite		6 436
DCaa NCquad amphibolite and amphibole gneiss 3.097 pCam NCquad amphibolite and hornblende gneiss 3.097 pCba TNO01 gabbro 3.097 pCcm NCquad biotite-muscovite mylonite gneiss biotite schist & biotite mylonite gneiss 1.917 pCcs NCquad biotite schist includes(biotite, Clinozoite, quartz) 2.34 pCgn NCquad biotite schist (composed of quartz, plagicolase, bio, ms) 1.550 pms GA001 biotite schist (this is cross-biotite schist, metasand, metasilt 7.31 pms NCquad porphyroblastic mylonite schist or phyllite cross-biotite schist, metasand, metasilt 7.38 Qal NCquad alluvium ff retrogressed, then biotite schist 6.622 Yaa NCquad amphibolite if retrogressed, then biotite schist 6.22 Yaa NCquad amphibolite if retrogressed, then biotite schist 6.22 Yaa NCquad amphibolite if retrogressed, then biotite schist 6.22 Yaa	nip5	NCauad	amphibolite		0,430
pCam NCquad amphibolite and hornblende gneiss 331 pCba TN001 gabbro diorite 190 pCcm NCquad biotite muscovite mylonite gneiss biotite schist & biotite mylonite gneiss 1.917 pCgn NCquad biotite gneiss, ranges to biotite schist (composed of quartz), plagiclase, bio,ms) 1.550 pgn NCquad biotite schist (this is cross-biotite schist) 129 pmy NCquad porphyroblastic mylonite schist & gneiss minor muscovite-biotite schist 6,681 p22mb NCquad aluvium calcitic to dolomitic marble calcareous quartzite 387 Qal NCquad amphibolite if errorgressed, then biotite schist 6622 Yam2 NCquad amphibolite if errorgressed, then biotite schist 622 Yam2 NCquad biotite granitic gneiss amphibolite, calc-silicate rock, marble 493,924 Ybg2 NCquad ingmatic biotite-hornblende gneiss 1342 14 Ybg2 NCquad migmatic biotite-hornblende gneiss 14,340	<u>г</u>	NCquad	amphibalita and amphibala graiss		2 007
DCain NCquad anyhibolite anyhibolite anyhibolite pCca TN001 gabbro diorite 190 pCcs NCquad biotite-muscovite mylonite gneiss biotite schist & biotite mylonite gneiss 1,917 pCcs NCquad biotite schist includes/biotite/clinozoiste, quartz) 234 pCgn NCquad biotite schist (composed of quartz, plagioclase, bio,ms) 1,550 pms NCquad biotite schist (this is cross-biotite schist) 129 pms NCquad porphyroblastic mylonite schist & gneiss schist, metaand,metasilt 73 PzZmb NCquad calcitic to dolomitic marble calcareous quartzite 337 Qal NCquad aluvium plitic schist, metaandsone 13,482 Yam NCquad amphibolite if retrogressed, then biotite schist 6621 Yam2 NCquad biotite angen gneiss migmattic biotite-hornblende gneiss 143,482 Yam2 NCquad migmatic biotite-hornblende gneiss migmattic biotite-hornblende gneiss 143,340 Ybhg2 NCquad migmatic biotite-hornblende gneiss	pCaa	NCquad	amphibolite and horphlanda gnaics		3,037
pCcm NCquad biotite biotite biotite state pCgn NCquad biotite schitt includes(biotite,chincosiste, quartz) 234 pCgn NCquad biotite schitte schitte <td< td=""><td>pCan</td><td>TNO01</td><td>amphibolite and normblende grieiss</td><td>diarita</td><td>100</td></td<>	pCan	TNO01	amphibolite and normblende grieiss	diarita	100
DCLIN NCquad Diotite=Inition (initial griess) Diotite stinist 1,921 DCgn NCquad biotite schist includes clinist quartz, plagioclase, plor, ms) 1,550 pgn NCquad biotite schist (composed of quartz, plagioclase, plor, ms) 1,550 pms8 GA001 biotite schist (this is cross-biotite schist) 129 pmy NCquad porphyroblastic mylonite schist & greiss (this is cross-biotite schist) 166 PzZmb NCquad muscovite-chlorite schist & greiss calcitic to dolomitic marble cross-biotite schist, metasand, metasilt 73 PzZmb NCquad alluvium calcitic to dolomitic marble calcitic to dolomitic marble calcitic to dolomitic marble 13,482 Ya NCquad amphibolite if retrogressed, then biotite schist 622 Yaa2 NCquad amphibolite greiss migmatitic biotite-hornblende gne.amp 19 Ybgs NCquad migmatic biotite-hornblende gneiss migmatitic biotite-hornblende gneiss 14,340 Ybhg2 NCquad migmatic biotite norbibende gneiss interlayed with amphibolite grainfs grainfig grainfig graulite auge grainfig graulite auge grainfig g	pCba	NCauad	gabbio histita mussovita mulanita gnaiss	biotito schiet & biotito mylanito gnoiss	1 0 1 7
DCCs NCquad Diotite scinst Includes diotite, dual (2) 234 pCgn NCquad biotite preiss, ranges to biotite schist (composed of quartz, plagicalase, bio, ms) 1,550 pgn NCquad biotite schist (this is cross-biotite schist) 129 pmy NCquad porphyroblastic mylonite schist & gneiss (this is cross-biotite schist, metasand, metasilt 73 P2Zmb NCquad allvivim calcareous quartzite 387 Qal NCquad allvivim 500 13,482 Yam2 NCquad amphibolite ff errogressed, then biotite schist 622 Yam2 NCquad amphibolite if errogressed, then biotite schist 622 Yam2 NCquad amphibolite 13,482 143,402 Ybhg2 NCquad migmatic biotite-hornblende gneiss migmatic biotite-hornblende gneiss 143,402 Ybhg2 NCquad migmatic biotite-hornblende gneiss interlayed with amphibolite&felsic gneis 134 Ydsa NCquad migmatic biotite-hornblende gneiss interlayed with amphibolit	peen	NCquad	biotite-muscovite mylomite griefss	blotite schist & blotite mylonite gneiss	1,917
pCgnNCquadbiotite griess, ranges to biotite schist(Composed or quar2, plagotase, bio, ms)1,550pgnNCquadbiotite-plagicalase-quartz gneissminor muscovite-biotite schist3,162pms8GA001biotite schist(this is cross-biotite schist)129pmyNCquadporphyroblastic mylonite schist & gneisscross-biotite schist, metasand, metasilt73PzZmbNCquadmuscovite-chlorite schist or phyllitecross-biotite schist, metasand, metasilt73QalNCquadaluviumcalcitic to dolomitic marblecalcareous quartzite387QalNCquadaluviumif retrogressed, then biotite schist622Yam2NCquadamphiboliteif retrogressed, then biotite schist622Yam2NCquadamphiboliteif retrogressed, then biotite schist622YbggNCQuadamphibolite granitic gneissmigmatitic biotite-hornblende gne.amp19YbggNCquadmigmatic biotite-hornblende gneiss14,340YbnNCquadmigmatic biotite-hornblende gneiss14,340YbnNCquadmigmatic biotite-hornblende gneiss134YdgaNCquadmigmatic biotite-hornblende gneiss144YdgaNCquadmigmatic biotite-hornblende gneiss144YdgaNCquadmigmatic biotite-hornblende gneiss144Ybn2NCquadmigmatic biotite-hornblende gneiss134Ygg2NCquadmigmatic biotite-hornblende gneissmaphibolite, hornblende,391	pCcs	NCquad	biotite scrist	includes(blotite,clinozoisite, quartz)	234
pgnNcQuadbiotite-plagitolase-quark genessInition muscrotte-biotite schist3,162pmsGA001biotite schist(this is cross-biotite schist)129pmyNCquadporphyroblastic mylonite schist & gneiss(this is cross-biotite schist)129pzZmmaNCquadmuscovite-chlorite schist or phylitecross-biotite schist, metasand,metasilt73QalNCquadalluviumcalcitic to dolomitic marblecalcareous quartzite387QalNCquadalluviumpelitic schist, metasandstone13,482YaNCquadamphiboliteif retrogressed, then biotite schist622Yam2NCquadamphiboliteamphibolite184Ybag2NCquadbiotite augen gneissmigmatic biotite-hornblende gne.amp19Ybbg2NCquadmigmatic biotite-hornblende gneissamphibolite, calc-silicate rock, marble493,924Ybhm2NCquadmigmatic biotite-hornblende gneissinterlayed with amphibolite&fiels gneis613Ybm2NCquadmigmatic biotite-hornblende gneissgrossular-cal-silicate granofels245Yhyp2NCquadamphibolitewhere retrogressed, then biotite schist80YggaNCQuadamphibolitemigmatic biotite-hornblende gneiss14,340Yhyp2NCquadmigmatic biotite-hornblende gneissgrossular-cal-silicate granofels245Yhyp2NCquadmigmatic biotite-hornblende gneissamphibolite, marbic granulite15YmaNCQuadmigmatic	pcgn	NCquad	biotite gneiss, ranges to biotite schist	(composed of quartz,plagioclase,bio,ms)	1,550
pmssGAUU1biotite scnist(this is cross-bottle scnist)1.29pmyNCquadporphyroblastic mylonite schist & gneiss6.681PzZmbNCquadcalcitic to dolomitic marblecalcareous quartzite387QalNCquadalluviumcalcitic to dolomitic marblecalcareous quartzite387QalNCquadbiotite paragnesis & schistpelitic schist, metasandstone13,482YaNCquadamphiboliteif retrogressed, then biotite schist6622Yam2NCquadamphiboliteif retrogressed, then biotite schist6222Yam2NCquadamphiboliteif retrogressed, then biotite schist6222YbggNC002biotite auge gneissmigmatitic biotite-hornblende gneiss184YbggNCQuadmigmatic biotite-hornblende gneiss3614,340Ybn2NCquadmigmatic biotite-hornblende gneiss14,340Ybn2NCquadamphiboliteamphibolite, hornblende gneiss134YdgaNCquadamphibolitegrossular-cal-silicate granofels245Yhyp2NCquadamphibolitemetasedimentary rock6,282YmgNC002migmatic biotite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissamphibolite139YmgNC002amphibolitemetasedimentary rock6,282YmgNC002amphibolitemetasedimentary rock6,282YmgNC002migmatic biotite-	pgn	NCquad	biotite-plagioclase-quartz gneiss	(this is associated biolite schist)	3,162
pmyNCquadporphyroblastic mylonite scnist & griesscross-biotite schist, metasand, metasilt73PzZmbNCquadcalcitic to dolomitic marblecalcareous quartzite387QalNCquadalluviumcalcitic to dolomitic marblecalcareous quartzite387QalNCquadalluviumif retrogressed, then biotite schist622YaNCquadamphiboliteif retrogressed, then biotite schist622Yam2NCquadamphiboliteif retrogressed, then biotite schist622Yam2NCquadbiotite augen gneissmigmatitic biotite-hornblende gne.amp19YbggNCQuadmigmatic biotite-hornblende gneiss36Ybhn2NCquadmigmatic biotite-hornblende gneiss14,340YbnNCquadmigmatic biotite-hornblende gneiss144,340YbnNCquadmigmatic biotite-hornblende gneiss134YdgaNCquadamphibolitewhere retrogressed, then biotite schist80Ygcs2NCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhyp2NCquadmigmatic biotite-hornblende gneissamphibolite, mafic granulite15YmamNC002migmatic biotite-hornblende gneissamphibolite, fornblende gneiss14Ymg2NCquadmigmatic biotite-hornblende gneissamphibolite, schist245Yhyp2NCquadmigmatic biotite-hornblende gneissamphibolite, fornblende391Ymg2NCquadmigmatic biotite-hornble	pms8	GA001	blotite schist	(this is cross-biotite schist)	129
PZZmba NCquad muscovite-chorite scriist or pnylitte Cross-bolivit scriist, metasaho, metasiti 73 PZZmma NCquad calcitic to dolomitic marble calcareous quartzite 387 Qal NCquad alluvium 500 tf NCquad biotite paragneiss & schist pelitic schist, metasandstone 13,482 Ya NCquad amphibolite 184 Ybag2 NCquad biotite paranite gneiss migmatitic biotite-hornblende gne.amp 19 Ybgg NCQuad migmatic biotite-hornblende gneiss amphibolite, calc-silicate rock, marble 493,924 Ybhp2 NCquad migmatic biotite-hornblende gneiss interlayed with amphibolite&felsic gneis 613 Ycs2 NCquad amphibolite where retrogressed, then biotite schist 80 Ydga NCquad amphibolite where retrogressed, then biotite schist 80 Ydga NCquad amphibolite metre retrogressed, then biotite schist 80 Ygcs2 NCquad migmatic biotite-hornblende gneiss grossular-calc-silicate granofels 245 Yhyp2 NCquad amphibolite metre retrogressed, then biotite schist 80 Ygcs2 NCquad migmatic biotite-hornblende gneiss grossular-calc-si	pmy	NCquad	porphyrobiastic mylonite schist & gneiss	and the second state of the second se	6,681
P2ZmmaNCquadcalcritic to doiomitic marblecalcareous quartizite387QalNCquadalluvium500IfNCquadbiotite paragneiss & schistpelitic schist, metasandstone13,482YaNCquadamphiboliteif retrogressed, then biotite schist622Yam2NCquadamphiboliteif retrogressed, then biotite schist622Yam2NCquadbiotite granitic gneissmigmatitic biotite-hornblende gne.amp19YbggNCQu2biotite granitic gneissamphibolite, calc-silicate rock, marble493,924Ybhg2NCquadmigmatic biotite-hornblende gneiss36Ybhm2NCquadmigmatic biotite-hornblende gneiss144,340YbnNCquadbiotite granific gneiss & biotite gneissinterlayed with amphibolite&felsic gneis613YdgaNCquadamphibolitewhere retrogressed, then biotite schist80Ygcs2NCquadamphibolite-hornblende gneissgrassular-calc-silicate granofels245Yhyp2NCquadmigmatic biotite-hornblende gneissamphibolite, marci granulite15YmamNCQu2migmatic biotite-hornblende gneissamphiboliteamphibolite140,002YmgNCQuadmigmatic biotite-hornblende gneissamphibolite140,002391Ypg22NCquadmigmatic biotite-hornblende gneissamphibolite131YmgNCQuadmigmatic biotite-hornblende gneissmafc granulite (hornblende)391Ypg22NCQuad<	PZZMD	NCquad	muscovite-chlorite schist or phyllite	cross-biotite schist, metasand., metasiit	/3
QaiNCquadaluviumbiotite500tfNCquadbiotite paragneiss & schistpelitic schist, metasandstone13,482YanNCquadamphiboliteif retrogressed, then biotite schist622Yam2NCquadamphiboliteif retrogressed, then biotite schist622Yam2NCquadbiotite augen gneissmigmattic biotite-hornblende gne.amp18YbggNCQu2biotite granitic gneissamphibolite, calc-silicate rock, marble493,924Ybhm2NCquadmigmatic biotite-hornblende gneiss14,340YbnNCquadmigmatic biotite-hornblende gneiss14,340YonNCquadbiotite granitic gneiss & biotite gneissinterlayed with amphibolite&felsic gneis613Ycs2NCquadamphibolitewhere retrogressed, then biotite schist80Ygcs2NCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhp2NCquadpyroxene granuliteamphibolitemetasedimentary rock6,282YmgNCQ02amphibolite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissmafic granulite131ZaaNCquadamphiboliteretrogressed to biotite schist23YsaNCquadamphiboliteretrogressed to biotite schist23Ymg2NCquadamphiboliteretrogressed to biotite schist131ZaaNCQuadamphibolitemeta-calcareous sedimentary142	PzZmma	NCquad	calcitic to dolomitic marble	calcareous quartzite	387
trNCquadbiotite paragness & schistpelitic schist, metasandstone13,482YaNCquadamphiboliteif retrogressed, then biotite schist6222Yam2NCquadamphibolite184Ybag2NCQuadbiotite augen gneissmigmatitic biotite-hornblende gne.amp19YbggNC002biotite granitic gneissamphibolite, calc-silicate rock, marble493,924Ybhg2NCquadmigmatic biotite-hornblende gneiss36Ybhm2NCquadmigmatic biotite-hornblende gneiss14,340YbnNCquadbiotite granitic gneiss & biotite gneissinterlayed with amphibolite grass613Ycs2NCquadcalc-silicate granofelsamphibolite, hornblende gneiss134YdgaNCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhyp2NCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245YmamNC002amphibolitemetasedimentary rock6,282YmgNC002migmatic biotite-hornblende gneissamphibolite, mafic granulite140,002Ymg2NCquadmigmatic biotite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391YsaNCquadamphiboliteretrogressed to biotite schist23YscaNCquadamphibolitemeta-calcareous sedimentary352ZabaNCO02amphibolitemeta-calcareous sedi	Qal	NCquad	alluvium		500
YaNCquadamphiboliteif retrogressed, then biotite schist622Yam2NCquadamphibolite184Ybag2NCquadbiotite augen gneissmigmatitic biotite-hornblende gne.amp19YbggNCQuadmigmatic biotite-hornblende gneissamphibolite, calc-silicate rock, marble493,924Ybhg2NCquadmigmatic biotite-hornblende gneiss36Ybhm2NCquadmigmatic biotite-hornblende gneiss14,340YbnNCquadbiotite granitic gneiss & biotite gneissinterlayed with amphibolite&felsic gneis613Ycs2NCquadcalc-silicate granofelsamphibolite, hornblende gneiss134YdgaNCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhyp2NCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhyp2NCquadmigmatic biotite-hornblende gneissamphibolite, mafic granulite115YmamNC002migmatic biotite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391Ypg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391Ypg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391Ypg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391Ypg2NCquadmigmatic biotite-hornblende gneissbiotite augen gneiss<	tf	NCquad	biotite paragneiss & schist	pelitic schist, metasandstone	13,482
Yan2NCquadamphibolite184Ybag2NCquadbiotite augen gneissmigmatitic biotite-hornblende gne.amp19YbggNCO02biotite granitic gneissamphibolite, calc-silicate rock, marble493,924Ybhg2NCquadmigmatic biotite-hornblende gneissamphibolite, calc-silicate rock, marble493,924Ybhm2NCquadmigmatic biotite-hornblende gneissinterlayed with amphibolite& felsic gneis613Ycs2NCquadcalc-silicate granofelsamphibolite, hornblende gneiss134YdgaNCquadamphibolitewhere retrogressed, then biotite schist80Ygcs2NCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhyp2NCquadpyroxene granuliteamphibolite, mafic granulite114YmgNC002migmatic biotite-hornblende gneissamphibolite, mafic granulite1140,002Ymg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391Ypg2NCquadmigmatic biotite-hornblende gneissbiotite augen gneiss19YsaNCquadamphiboliteretrogressed to biotite schist23YscaNCquadamphibolitemeta-calcareous sedimentary355ZabaNCQuadamphibolitemeta-calcareous sedimentary12,125ZabaNC002amphibolitemeta-calcareous sedimentary12,125ZabaNC002biotite gneissmica schist398ZabaNC002biotite	Ya	NCquad	amphibolite	if retrogressed, then biotite schist	622
Ybag2NCquadbiotite augen gneissmigmatitic biotite-hornblende gne.amp19YbggNC002biotite granitic gneissamphibolite, calc-silicate rock, marble493,924Ybhg2NCquadmigmatic biotite-hornblende gneiss36Ybhm2NCquadbiotite granitic gneiss & biotite gneissinterlayed with amphibolite&felsic gneis613Ycs2NCquadcalc-silicate granofelsamphibolite, hornblende gneiss134,340YdgaNCquadamphibolitewhere retrogressed, then biotite schist80Ygcs2NCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhyp2NCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhyp2NCquadpyroxene granuliteamphibolite, mafic granulite140,002YmgNC002amphibolitemetasedimentary rock6,282YmgNC002migmatic biotite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391Ypg2NCquadmigmatic biotite-hornblende gneissbiotite augen gneiss19YsaNCquadamphiboliteretrogressed to biotite schist131ZaaNCquadamphibolitemeta-calcareous sediments355ZabaNC002amphibolitemeta-calcareous sediments355ZabaNC002amphibolitemetasedimentary rock182,996ZabaNC002biotit	Yam2	NCquad	amphibolite		184
YbggNC002biotite granitic gneissamphibolite, calc-silicate rock, marble493,924Ybhg2NCquadmigmatic biotite-hornblende gneiss36Ybhm2NCquadbiotite granitic gneiss & biotite gneissinterlayed with amphibolite&felsic gneis14,340Ycs2NCquadbiotite granitic gneiss & biotite gneissamphibolite, hornblende gneiss133Ycs2NCquadcalc-silicate granofelsamphibolite, hornblende gneiss134YdgaNCquadamphibolitewhere retrogressed, then biotite schist80Ygcs2NCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhyp2NCquadpyroxene granuliteamphibolite, metasedimentary rock6,282YmgNC002migmatic biotite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391Ypgg2NCquadmigmatic biotite-hornblende gneissbiotite augen gneiss19YsaNCquadamphiboliteretrogressed to biotite schist131ZaaNCQuadamphibolitemeta-calcareous sediments355ZabaNC002amphibolitemetasedimentary rock18,296ZabgNC002biotite gneissmuscbio-gneiss, calc-silicate, amphibol485,072ZacsNCquadlayered amphibolitemetasedimentary rock12,7125ZabaNC002biotite gneissmica schist398ZbgbNCQuad <td< td=""><td>Ybag2</td><td>NCquad</td><td>biotite augen gneiss</td><td>migmatitic biotite-hornblende gne.amp</td><td>19</td></td<>	Ybag2	NCquad	biotite augen gneiss	migmatitic biotite-hornblende gne.amp	19
Ybhg2NCquadmigmatic biotite-hornblende gneiss36Ybhm2NCquadmigmatic biotite-hornblende gneiss14,340YbnNCquadbiotite granitic gneiss & biotite gneissinterlayed with amphibolite&felsic gneis613Ycs2NCquadcalc-silicate granofelsamphibolite, hornblende gneiss134YdgaNCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhyp2NCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhyp2NCquadpyroxene granuliteamphibolite, mafic granulite115YmamNC002amphibolite-hornblende gneissamphibolite, mafic granulite140,002Ymg2NCquadmigmatic biotite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391Ypg22NCquadmigmatic biotite-hornblende gneissbiotite augen gneiss19YscaNCquadamphiboliteretrogressed to biotite schist23YscaNCquadamphibolitemeta-calcareous sediments355ZabaNC002amphibolitemeta-calcareous sediments355ZabaNC002amphiboliteamphibolite, quartz-clinozoiste1,466ZataNCQuadcalc-silicate granofelsamphibolite, quartz-clinozoiste1,466ZataNCQ02amphibolitemetasedimentary127,125ZatbNC002biotite gneissmica schi	Ybgg	NC002	biotite granitic gneiss	amphibolite, calc-silicate rock, marble	493,924
Ybhm2NCquadmigmatic biotite-hornblende gneiss14,340YbnNCquadbiotite granitic gneiss & biotite gneissinterlayed with amphibolite&felsic gneis613Ycs2NCquadcalc-silicate granofelsamphibolite, hornblende gneiss134YdgaNCquadamphibolitewhere retrogressed, then biotite schist80Ygcs2NCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhyp2NCquadpyroxene granuliteamphibolite, mafic granulite15YmamNC002migmatic biotite-hornblende gneissamphibolite6,282YmgNC002migmatic biotite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391Ypg22NCquadmigmatic biotite-hornblende gneissbiotite augen gneiss19YsaNCquadamphiboliteretrogressed to biotite schist23YscaNCquadamphibolitemeta-calcareous sediments355ZabaNC002amphibolitemeta-calcareous sediments355ZabaNC002amphibolitemetasedimentary rock18,296ZataNC002amphibolitemetasedimentary127,125ZatbNC002amphibolitemetasedimentary9ZgmgNC002greenstonemetasedimentary rock, metabasalt10,074ZimNC002metagabbro (Bakersville) dikes92ZgmgNC002 <t< td=""><td>Ybhg2</td><td>NCquad</td><td>migmatic biotite-hornblende gneiss</td><td></td><td>36</td></t<>	Ybhg2	NCquad	migmatic biotite-hornblende gneiss		36
YbnNCquadbiotite granitic gneiss & biotite gneissinterlayed with amphibolite&felsic gneis613Ycs2NCquadcalc-silicate granofelsamphibolite, hornblende gneiss134YdgaNCquadamphibolitewhere retrogressed, then biotite schist80Ygcs2NCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhyp2NCquadpyroxene granuliteamphibolite, mafic granulite15YmamNCO02amphibolitemetasedimentary rock6,282YmgNC002migmatic biotite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391Ypg22NCquadmigmatic biotite-hornblende gneissbiotite augen gneiss19YsaNCquadamphiboliteretrogressed to biotite schist23YscaNCquadamphibolitemeta-calcareous sediments355ZabaNC002amphibolitemeta-calcareous sediments355ZabaNC002aphibolitemetasedimentary rock18,296ZabgNC002aphibolitemetasedimentary127,125ZatbNC002amphibolitemetasedimentary127,125ZatbNC002biotite gneissmica schist398ZbgbNCquadmetagabbro (Bakersville) dikes92ZgmgNC002greenstonemetasedimentary rock, metabasalt10,074ZimNC002metagabbro (Ybhm2	NCquad	migmatic biotite-hornblende gneiss		14,340
Ycs2NCquadcalc-silicate granofelsamphibolite, hornblende gneiss134YdgaNCquadamphibolitewhere retrogressed, then biotite schist80Ygcs2NCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhyp2NCquadpyroxene granuliteamphibolite, mafic granulite15YmamNC002amphibolitemetasedimentary rock6,282YmgNC002migmatic biotite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissbiotite augen gneiss19YsaNCquadamphiboliteretrogressed to biotite schist23YscaNCquadamphiboliteretrogressed to biotite schist131ZaaNCquadlayered amphibolitemeta-calcareous sediments355ZabaNC002amphibolitemetasedimentary rock18,296ZabgNC002biotite gneissmuscbio-gneiss, calc-silicate,amphibol485,072ZacsNCquadcalc-silicate granofelsamphibolite, quartz-clinozoisite1,466ZataNC002biotite gneissmica schist398ZbgbNCQuadmetagabbro (Bakersville) dikes99ZgmgNC002greenstone, amphib.dikes92ZareaNC002metagabbro (Bakersville) dikes6,252NC003metagabbro (Bakersville) dikes6,252<	Ybn	NCquad	biotite granitic gneiss & biotite gneiss	interlayed with amphibolite&felsic gneis	613
YdgaNCquadamphibolitewhere retrogressed, then biotite schist80Ygcs2NCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhyp2NCquadpyroxene granuliteamphibolite, mafic granulite15YmamNC002amphibolitemetasedimentary rock6,282YmgNC002migmatic biotite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391Ypg22NCquadmigmatic biotite-hornblende gneissbiotite augen gneiss19YsaNCquadamphiboliteretrogressed to biotite schist23YsaNCquadamphiboliteretrogressed to biotite schist131ZaaNCquadlayered amphibolitemeta-calcareous sedimentary rock18,296ZabaNC002amphibolitemetasedimentary rock18,296ZabgNC002biotite gneissmuscbio-gneiss, calc-silicate, amphibol485,072ZacsNCquadcalc-silicate granofelsamphibolite, quartz-clinozoisite1,466ZataNC002biotite gneissmica schist398ZbgbNCquadmetagabbro (Bakersville) dikes99ZgmgNC002greenstone, amphib.dikes6,252ZabaNC002metagabbro (Bakersville) dikes6,252	Ycs2	NCquad	calc-silicate granofels	amphibolite, hornblende gneiss	134
Ygcs2NCquadmigmatic biotite-hornblende gneissgrossular-calc-silicate granofels245Yhyp2NCquadpyroxene granuliteamphibolite, mafic granulite15YmamNC002amphibolitemetasedimentary rock6,282YmgNC002migmatic biotite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissamphibolite (hornblende)391Ypg22NCquadmigmatic biotite-hornblende gneissbiotite augen gneiss19YsaNCquadamphiboliteretrogressed to biotite schist23YscaNCquadamphiboliteretrogressed to biotite schist131ZaaNCquadlayered amphibolitemeta-calcareous sediments355ZabaNC002amphibolitemetasedimentary rock18,296ZabgNC002biotite gneissmuscbio-gneiss, calc-silicate,amphibol485,072ZacsNCquadcalc-silicate granofelsamphibolite, quartz-clinozoisite1,466ZataNC002biotite gneissmica schist398ZbgbNCquadmetagabbro (Bakersville) dikes99ZgmgNC002metadiabase, greenstone, amphib.dikes26,252	Ydga	NCquad	amphibolite	where retrogressed, then biotite schist	80
Yhyp2NCquadpyroxene granuliteamphibolite, mafic granulite15YmamNC002amphibolitemetasedimentary rock6,282YmgNC002migmatic biotite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391Ypgg2NCquadmigmatic biotite-hornblende gneissbiotite augen gneiss19YsaNCquadamphiboliteretrogressed to biotite schist23YscaNCquadamphiboliteretrogressed to biotite schist131ZaaNCquadlayered amphibolitemeta-calcareous sediments355ZabaNC002amphibolitemetasedimentary rock18,296ZabgNC002biotite gneissmuscbio-gneiss, calc-silicate,amphibol485,072ZacsNCquadcalc-silicate granofelsamphibolite, quartz-clinozoisite1,466ZataNC002biotite gneissmica schist398ZbgbNCquadmetagabbro (Bakersville) dikes99ZgmgNC002greenstone, amphib.dikes6,252ZamatNC002metadiabase, greenstone, amphib.dikes24ZhmaNC002metadiabase, greenstone, amphib.dikes24ZamatNC002metadiabase, greenstone, amphib.dikes26,252ZamatNC002metadiabase, greenstone, amphib.dikes25,252ZamatNC002metadiabase, greenstone, amphib.dikes24,252ZamatNC002met	Ygcs2	NCquad	migmatic biotite-hornblende gneiss	grossular-calc-silicate granofels	245
YmamNC002amphibolitemetasedimentary rock6,282YmgNC002migmatic biotite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391Ypgg2NCquadmigmatic biotite-hornblende gneissbiotite augen gneiss19YsaNCquadamphiboliteretrogressed to biotite schist23YscaNCquadamphiboliteretrogressed to biotite schist131ZaaNCquadlayered amphibolitemeta-calcareous sediments355ZabaNC002amphibolitemetasedimentary rock18,296ZacsNCquadcalc-silicate granofelsamphibolite, quartz-clinozoisite1,466ZataNC002biotite gneissmetasedimentary127,125ZatbNC002biotite gneissmica schist398ZbgbNCquadmetagabbro (Bakersville) dikes99ZgmgNC002greenstonemetasedimentary rock, metabasalt10,074ZlmNC002metadiabase, greenstone, amphib.dikes2424	Yhyp2	NCquad	pyroxene granulite	amphibolite, mafic granulite	15
YmgNC002migmatic biotite-hornblende gneissamphibolite140,002Ymg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391Ypgg2NCquadmigmatic biotite-hornblende gneissbiotite augen gneiss19YsaNCquadamphiboliteretrogressed to biotite schist23YscaNCquadamphiboliteretrogressed to biotite schist131ZaaNCquadlayered amphibolitemeta-calcareous sediments355ZabaNC002amphibolitemetasedimentary rock18,296ZacsNCquadcalc-silicate granofelsamphibolite, quartz-clinozoisite1,466ZataNC002biotite gneissmetasedimentary127,125ZatbNC002biotite gneissmica schist398ZbgbNCquadmetagabbro (Bakersville) dikes99ZgmgNC002greenstonemetasedimentary rock, metabasalt10,074ZlmNC002metadiabase, greenstone, amphib.dikes26,25227	Ymam	NC002	amphibolite	metasedimentary rock	6,282
Ymg2NCquadmigmatic biotite-hornblende gneissmafic granulite (hornblende)391Ypgg2NCquadmigmatic biotite-hornblende gneissbiotite augen gneiss19YsaNCquadamphiboliteretrogressed to biotite schist23YscaNCquadamphiboliteretrogressed to biotite schist131ZaaNCquadlayered amphibolitemeta-calcareous sediments355ZabaNC002amphibolitemeta-calcareous sediments355ZabaNC002biotite gneissmuscbio-gneiss, calc-silicate,amphibol485,072ZacsNCquadcalc-silicate granofelsamphibolite, quartz-clinozoisite1,466ZataNC002biotite gneissmetasedimentary127,125ZatbNC002biotite gneissmica schist398ZbgbNCquadmetagabbro (Bakersville) dikes99ZgmgNC002greenstonemetasedimentary rock, metabasalt10,074ZlmNC002metadiabase, greenstone, amphib.dikes6,252	Ymg	NC002	migmatic biotite-hornblende gneiss	amphibolite	140,002
Ypgg2NCquadmigmatic biotite-hornblende gneissbiotite augen gneiss19YsaNCquadamphiboliteretrogressed to biotite schist23YscaNCquadamphiboliteretrogressed to biotite schist131ZaaNCquadlayered amphibolitemeta-calcareous sediments355ZabaNC002amphibolitemeta-calcareous sediments355ZabaNC002biotite gneissmuscbio-gneiss, calc-silicate,amphibol485,072ZacsNCquadcalc-silicate granofelsamphibolite, quartz-clinozoisite1,466ZataNC002biotite gneissmetasedimentary127,125ZatbNC002biotite gneissmica schist398ZbgbNCquadmetagabbro (Bakersville) dikes99ZgmgNC002greenstonemetasedimentary rock, metabasalt10,074ZlmNC002metadiabase, greenstone, amphib.dikes6,252	Ymg2	NCquad	migmatic biotite-hornblende gneiss	mafic granulite (hornblende)	391
YsaNCquadamphiboliteretrogressed to biotite schist23YscaNCquadamphiboliteretrogressed to biotite schist131ZaaNCquadlayered amphibolitemeta-calcareous sediments355ZabaNC002amphibolitemeta-calcareous sediments355ZabaNC002biotite gneissmuscbio-gneiss, calc-silicate,amphibol485,072ZacsNCquadcalc-silicate granofelsamphibolite, quartz-clinozoisite1,466ZataNC002amphibolitemetasedimentary127,125ZatbNC002biotite gneissmica schist398ZbgbNCquadmetagabbro (Bakersville) dikes99ZgmgNC002greenstonemetasedimentary rock, metabasalt10,074ZlmNC002metadiabase, greenstone, amphib.dikes6,252	Ypgg2	NCquad	migmatic biotite-hornblende gneiss	biotite augen gneiss	19
YscaNCquadamphiboliteretrogressed to biotite schist131ZaaNCquadlayered amphibolitemeta-calcareous sediments355ZabaNC002amphibolitemeta-calcareous sediments355ZabgNC002biotite gneissmuscbio-gneiss, calc-silicate,amphibol485,072ZacsNCquadcalc-silicate granofelsamphibolite, quartz-clinozoisite1,466ZataNC002amphibolitemetasedimentary127,125ZatbNC002biotite gneissmica schist398ZbgbNCquadmetagabbro (Bakersville) dikes99ZgmgNC002greenstonemetasedimentary rock, metabasalt10,074ZlmNC002metadiabase, greenstone, amphib.dikes6,252	Ysa	NCquad	amphibolite	retrogressed to biotite schist	23
ZaaNCquadlayered amphibolitemeta-calcareous sediments355ZabaNC002amphibolitemetasedimentary rock18,296ZabgNC002biotite gneissmuscbio-gneiss, calc-silicate,amphibol485,072ZacsNCquadcalc-silicate granofelsamphibolite, quartz-clinozoisite1,466ZataNC002amphibolitemetasedimentary127,125ZatbNC002biotite gneissmica schist398ZbgbNCquadmetagabbro (Bakersville) dikes99ZgmgNC002greenstonemetasedimentary rock, metabasalt10,074ZlmNC002metadiabase, greenstone, amphib.dikesanticite6,252	Ysca	NCquad	amphibolite	retrogressed to biotite schist	131
ZabaNC002amphibolitemetasedimentary rock18,296ZabgNC002biotite gneissmuscbio-gneiss, calc-silicate,amphibol485,072ZacsNCquadcalc-silicate granofelsamphibolite, quartz-clinozoisite1,466ZataNC002amphibolitemetasedimentary127,125ZatbNC002biotite gneissmica schist398ZbgbNCquadmetagabbro (Bakersville) dikes9ZgmgNC002greenstonemetasedimentary rock, metabasalt10,074ZlmNC002metadiabase, greenstone, amphib.dikes445,072	Zaa	NCquad	layered amphibolite	meta-calcareous sediments	355
ZabgNC002biotite gneissmuscbio-gneiss, calc-silicate, amphibol485,072ZacsNCquadcalc-silicate granofelsamphibolite, quartz-clinozoisite1,466ZataNC002amphibolitemetasedimentary127,125ZatbNC002biotite gneissmica schist398ZbgbNCquadmetagabbro (Bakersville) dikes99ZgmgNC002greenstonemetasedimentary rock, metabasalt10,074ZlmNC002metadiabase, greenstone, amphib.dikes6,252	Zaba	NC002	amphibolite	metasedimentary rock	18,296
ZacsNCquadcalc-silicate granofelsamphibolite, quartz-clinozoisite1,466ZataNC002amphibolitemetasedimentary127,125ZatbNC002biotite gneissmica schist398ZbgbNCquadmetagabbro (Bakersville) dikes99ZgmgNC002greenstonemetasedimentary rock, metabasalt10,074ZlmNC002metadiabase, greenstone, amphib.dikes6,252	Zabg	NC002	biotite gneiss	muscbio-gneiss, calc-silicate, amphibol	485,072
ZataNC002amphibolitemetasedimentary127,125ZatbNC002biotite gneissmica schist398ZbgbNCquadmetagabbro (Bakersville) dikes9ZgmgNC002greenstonemetasedimentary rock, metabasalt10,074ZlmNC002metadiabase, greenstone, amphib.dikes6,252	Zacs	NCquad	calc-silicate granofels	amphibolite, quartz-clinozoisite	1,466
Zatb NC002 biotite gneiss mica schist 398 Zbgb NCquad metagabbro (Bakersville) dikes 9 9 Zgmg NC002 greenstone metasedimentary rock, metabasalt 10,074 Zlm NC002 metaiabase, greenstone, amphib.dikes 6,252	Zata	NC002	amphibolite	metasedimentary	127,125
Zbgb NCquad metagabbro (Bakersville) dikes 9 Zgmg NC002 greenstone metasedimentary rock, metabasalt 10,074 Zlm NC002 metaiabase, greenstone, amphib.dikes 6,252	Zatb	NC002	biotite gneiss	mica schist	398
Zgmg NC002 greenstone metasedimentary rock, metabasalt 10,074 Zlm NC002 metadiabase, greenstone, amphib.dikes 6,252 Zmax NC002 metadiabase, greenstone, amphib.dikes 6,252	Zbgb	NCquad	metagabbro (Bakersville) dikes		9
Zlm NC002 metadiabase, greenstone, amphib.dikes 6,252 Zmax NC002 metadiabase, greenstone, amphib.dikes 6,252	Zgmg	NC002	greenstone	metasedimentary rock, metabasalt	10,074
Zuren NCOO2 menhin television televisi televisiontella television television television	Zlm	NC002	metadiabase, greenstone, amphib.dikes		6,252
j zman j NCUUZ j marbie schist 10,567	Zman	NC002	marble	schist	10,567
ZYba NC002 amphibolite metasedimentary rock 10,859	ZYba	NC002	amphibolite	metasedimentary rock	10,859
ZYbn NC002 biotite gneiss-migmatitic with biotite garnet gneiss & amphibolite 370,666	ZYbn	NC002	biotite gneiss-migmatitic	with biotite garnet gneiss & amphibolite	370,666
ZYfcs NCquad ferriferous calc-silicate granofels magnetite-garnet-epidote-hornblende-q 16	ZYfcs	NCquad	ferriferous calc-silicate granofels	magnetite-garnet-epidote-hornblende-q	16

SILICICLASTIC ROCKS – group 3										
аа	Hatcher			554						
as	NCquad	actinolite schist	schistose to acinolite-chlorite talc	2						
bc	NCquad	conglomerate metasandstone?	unconformity	5						
bmg	NCquad	feldspathic mica gneiss	thin bands neosomal pegmatite	8,618						
bmy	NCquad	feldspar set in mylonitic matrix	(this is a blastomylonite)	197						
bp	Hatcher			1,130						
bpm	Hatcher			30,661						
bz	NC002	schist	phyllonite	18,819						
С	NCquad	quartz metaconglomerate, metasandstone	metasiltstone, metatuff, greenstone	23						
Cag	NCquad	augen gneiss, quartz monzonite		51,283						
Cc1	NCquad	quartzite		848						
Cch	TN001	quartz-pebble conglomerate, gray arkose	siltstone and shale; irreg bedding	12,355						
Cchi	1N001	quartzite	shale	2,255						
	NC002	arenite	shale	31,141						
Ccu1	NC002	arenite	siltstone	21,648						
Cel	NCquad	metasandstone and quartzite	(IS Erwin Formation)	2,101						
Cez	TN001	quartzite	snale	82,494						
Cg	NCquad	Cataclastic gneiss (gran&bio gneiss)	myionitie gneiss and myonite schist	3,765						
Ch1 Ch2	NCquad	Hampton formation (micaceous shale?)	faldanathia sandatan a	968						
Cha	TN001	siity, sandy, micaceous snale		62,798						
Che	1N001	quartzite	sandstone	8,255						
Chg	NC002	monzonitic to granodioritic gneiss		185,594						
Crig	3C001	silty sandy shale misasoous		12,821						
cnu	Hatchor	silty, salidy, slidle, filicaceous		2,005						
Cab		quartzita		2 041						
Chi	TN001	silty and sandy micacoous shale& siltstone	foldspathic quartzito	2 005						
Cu	TN001	sandstone	arkoso	3,905						
Cuu	NCguad	conglomeratic metasandstone	guartzite and phyllitic metamudstope	4 003						
Cuu	NCquad	metasandstone metaconglomerate	and hightite-muscovite schist	11 854						
C7cn	SC001	metasedimentary rock	(Chauga River and Poor Mt undivided)	27 557						
CZms1	NC002	mica schist-garnet, staurolite	micaceous guartzite	129,649						
CZms2	SC001	sillimanite-mica schist	muscovite-biotite schist	1.561						
CZtp	NC002	porphyroblastic gneiss, granodioritic	and migmatitic	31.700						
Dsc	Hatcher			18,490						
DSc	NC002	granitic gneiss		63						
DSg	SC001	granitic gneiss		16,590						
DSwg	NCquad	muscovite-biotite granitoid	granodiorite to quartz monzonite	10,417						
ehga	Hatcher			23,356						
ehgc	Hatcher			2,666						
ehgf	Hatcher			314						
fs	NCquad	porphyroclastic phyllonite	and phyllonitic schist	15,963						
gam	NCquad	metasandstone w/metasiltstone, musc.schi	minor calc-silicate granofels	5,274						
gbb	NCquad	greywacke metaconglom.,slate, metasiltst		163						
gbgs	NCquad	feldspathic metagreywacke	rare greywacke metaconglomerate	2,600						
gch	NCquad	metagreywacke	greywacke metaconglom, garnet ms.schis	5,721						
gd	NCquad	granodiorite		91						
gdf	NCquad	metasandstone, porphyroblastic musco.sch	minor metaquartzite, metasilt. muscovite,	1,216						
gg1a	NCquad	granitic gneiss	magnetite, sphene, biotite	643						
gg1b	GA001	granitic gneiss		8,268						
ggs	NCquad	porphyroblast. muscovite schist, metasand	minor muscovite schist, calc-sili. grano	319						
gmg	NCquad	mylonitic gneiss and schist	(granitic gneiss)	14,070						
gms	NCquad	garnetiferous muscovite schist	garnet mica schist	21,506						
ma	Hatcher			1,096						
mag	NCquad	mylonite gneiss, protomylonite	aegirine granitic gneiss(E ForkRdgfault)	1,158						
mChg	NCquad	mylonitic Henderson gneiss		925						
mg	NCquad	muscovite gneiss and schist		1,296						
Mg	TN001	shale, siltstone, glauconitic sandstone	quartz pebble conglomerate	2,198						
mgn2	NCquad	magnetite granitic gneiss		487						
mmg	NCquad	mixed mica gneiss		10						
mp	NCquad	metamudstone, phyllitic	metamorphism between slate and mi.shc	24						

ms	NCquad	mica schist	muscovite schist, metasandstone	19,935
mss	NCquad	metasandstone and schist		6,498
my	NCquad	mylonite and ultramylontite	porphyroblastic mostly	3,944
none	NCquad			2,002
ntq	NCquad	metaquartzite, thin black schist	dark-grey schist and metasiltstone	349
Ob	TN001	claystone, siltstone	sandstone, metabentonite	6,312
OCg	NC002	metamorphosed granitic rock, granite		106,692
Omg	SC001	granitic gneiss		204,255
OSgg	NCquad	granitic gneiss	augen gneiss on eastern contact	16,951
Р	NCquad			2
pa1	GA001	schist		1,842
pCags	NCquad	mica gneiss and schist		484
pCc	NCquad	mylonitic quartz-feldspar gneiss	minor garnet	23,249
pCc2	TN001	migmatite	Gneiss	49,266
pCca	TN001	feldspathic metasandstone	slate and metasiltstone	25,004
pCcg	NCquad	quartzo-feldspathic gneiss	minor biotite	1,079
pCg	TN001	greywacke	Arkose	225,815
pCgq	NCquad	quartz monzonite(mylonitzed)	(composed of microcline,	3
рСо	TN001	sandstone (clastic sedimentary)	Shale	43,858
pCrb	TN001	sandstone (feldspathic, fine grained)	Slate	5,233
pCs	TN001	siltstone	Sandstone	127,495
pCss	TN001	argillaceous, micaceous shale	feldspathic sandstone and quartz congl.	20,910
pctg	Hatcher	greywacke schist (Tallulah Falls form)		202,187
pCtg	NCquad	banded granitic gneiss	(an unconformity - Toxaway gneiss)	266
pctp	Hatcher	aluminous schist	(Tallulah Falls Formation)	18,326
pctq	Hatcher	Tallulah Falls formation: guartz member		30,581
pCw	TN001	argillaceous, micaceous shale	feldspathic sandstone	245,461
pCwg	NCquad	sheared granitic unit	Grandfather Mts window (Wilson Creek)	1,472
pCwmg	NCguad	mica gneiss to augen gneiss	, , , , , , , , , , , , , , , , , , ,	2,375
pCwq	NCquad	(quartz monzonite) = muscovite, plagiocl	quartz,microcline, chlorite	409
pCwrg	NCguad	gneiss, guartz veins and aplite dikes		4.715
pCwrm	NCguad	mylonite gneiss (mylonite schist	and guartzofeldspathic mylonite gneiss	9,162
pg	NCguad	pegmatite (quartz. plagioclase.microclin	minot biotite, garnet	54
pg1	GA001	garnet mica schist		4.945
pgc	NCguad	porphyroclastic mica gneiss		4,249
pm2	GA001	metagreywacke	mica schist	33.890
pma	Hatcher			21.799
pmg	Hatcher			1.458
pmm	Hatcher			16
pma	Hatcher			1.085
n79	Hatcher	granitic gneiss		5.049
nzgr	Hatcher	granite (Rabun granite)		29,360
079W	Hatcher	granite (Whiteside granite)		27.077
Pzn	NCguad	negmatite	too small to denict at man scale?	22
P77bt	NCguad	cross-biotite, phyllite, schist	metasandstone.metasiltstone&feldspahic	2,143
Pz7hts	NCguad	cross-biotite phyllite schist graphitic	metasandstone metasiltstone&feldspahic	557
PzZn	NCguad	quartzose metasandstone	muscovite schist	119
0	Hatcher	quartzite		1 007
ч 01	GA001	quartzite		8 216
41 012	GA001	quartzite	mica schist	8 889
q10 q2	GA001		granitic gneiss	215
	NCguad		granitic griess	4 056
am	NCquad		(composed of quartz microcling aligos	4,030
4m SOg	scoo1	qualitz monzonite	(composed of quartz, microchne, oligoc	2 462
SOgg	3C001	granitic gneiss	augon gnoise	3,402
SOgg	NC002	granitic gneiss	augen gneiss	25,599
30gg	NCauch	sillimanito schist and gnoiss		40,033
	NCquad	trandhiamita with aliaclass in quarta	plagioclaso, plagioclaso, quarta	1,013
ta	NCquau		piagiociase, piagiociase-quariz	12
iq tw	NCquad	matacandstana & schist	schist locally w/graphite 9 garnet	384
Vaa	NCQUad		schist locally w/graphite & garnet	1,725
188 Veens	NC002	granulu greess		/5,621
Yscm	NCquad	protomytonitic granitoid gneiss		1,938
rscu	INCQUAD	myionitic granitold gneiss		945

Zabs	NC002	mica schist	Phyllite	65,526
Zacb	NCquad	mica-rich metasiltstone, mica schist	Metastandstone	597
Zagg	NCquad	garnet-muscovite-biotite gneiss		399
Zahb	NCquad	metasiltstone, phyllite, schist	phyllite, metaconglomerate, metagrayw.	2,802
Zams	NCquad	phyllite, schist, metagraywacke		7,730
Zamy	NCquad	mylonitic muscovite-feldspar-quartz gneis		22
Zats	NC002	mica schist	Gneiss	3,051
Zatw	NC002	metagraywacke	mica schist	105,982
Zb	NC002	mica schist	Quartzite	58,920
Zg	NC002	metamorphosed granitic	Mylonite	23,679
Zgma	NC002	meta-arkose-sericitic, conglomeratic	metasiltstone and slate	23,977
Zgmf	NC002	felsic metavolcanic rock		2,371
Zgmu	NC002	felsic metavolcanic rock	metasedimentary rock	17,451
Zgmw	NC002	metagraywacke, locally conglomeratic	metasiltstone and phyllite	36,854
Zgsm	NCguad	garnet-mica schist	locally graphitic and sulfidic, calc silicate	2,389
Zm	NC002	granite		18,867
Zmb	NC002	schist	Phyllite	43,966
Zrb	NC002	sandstone - feldspathic		6.196
75	NC002	feldspathic metasiltstone, metasandstone	phyllite, schist: conglomerate	29,090
 7sl	NC002	quartzite feldspathic	slate metasiltstone	26 336
Zsn	NC002	siltstone metamorphosed	locally argillite calcareous-arke Msil	4 743
Zsp	NC002	sandstone, metamorphosed	metasiltstone and phyllite	22 / 87
Z31 ZSW/	NC002	sandy slate, netanorphosed	hasal quartz-sericite schist or phyllite	7 8/19
7.00	NC002	sandy state, pebbly metagraywacke	metasedimentary rock	17 100
ZWC	NC002	monzongrapitic gnoice	nietasedinientaly lock	2 110
Zingn	NCquad	monzongrapitic gnoice	protonnyionitic phase	2,110
Zingu	NCquau			907
a a1	NCauad	SULFIDIC ROCKS - gr	Anakoasta formation/black schist unit)	2 100
gal	NCquad	muscovite schist, metasandstone	Anakeesta formation(black schist unit)	2,100
gaz	NCquad	metasandstone w/schist and muscovite sch	Anakeesta formation(metasandstone)	1,891
gas	NCquad	schist, metasandstone	Anakeesta formation(black schist unit)	1,799
ga4	NCquad	metasandstone w/schist and muscovite sch	Anakeesta formation(up.metasandstone)	2,096
ga5	NCquad	muscovite schist	Anakeesta formation(up.black schist unit	2,872
gbg	NCquad	slate & metasiltstone, sulfurous and	Graphitic	2,768
gt	NCquad	sulfidic phyllite	feldspathic metagraywacke	1,312
ghb	NCquad	sulphidic mica schist & metasiltstone	metasandstone, muscovite schist	423
gs	NCquad	graphite-muscovite schist	pyrite abundant in places	762
gw	NCquad	sulfidic phyllitite & muscovite schist	slate & garnet-muscovite schist	378
MDc	TN001	black shale		827
nt	NCquad	sulphidic schist & quartzose metasiltstone	Metaquartzite	310
pCr	TN001	gneiss	Migmatite	10,129
PzZnt	NCquad	graphitic&sulfidic phyllite,schist,metsl	quartzose metasandstone	6,353
sms	NCquad	sulfidic muscovite schist	amphibolite in thin interlay portions	57
Za	NC002	slate	schist, metasedimentary3	19,942
Zbg	NC002	slate, highly sulphidic	metasiltstone, metagraywacke	11,975
Zchs	NC002	slate to phyllite, graphitic, sulfidic	Metagraywacke	28,495
Zf	NC002	phyllite, graphitic and sulfidic		2,020
Zgs	NC002	metagraywacke and metasiltstone	sulfidic slate and schist	93,127
Zgsk	NCquad	syanite-garnet-mica schist	locally sulfidic, calc-silicate	2,897
Znt	NC002	slate and metasiltstone, sulfidic	tusquitee quartzite, thin slate layers	62,632
Zwe	NC002	slate to schist, graphitic and sulfidic	mica schist, metagraywacke, metacong.	90,184
		MIXED SILICICLASTIC -MAEIC	ROCKS – group 6	
app	NCguad	aegirine granitic gneiss	amphibole gneiss	5 579
200	NCguad	augon granitic gnoiss	hiotito grapitic gnoiss	121
hnl	Hatcher		אסמניב ברמווונוג בווכוסס	2 070
bpu	Hatchor			3,073
bpu	NCaurad			2,312
opu	NCquad	motocondistano, quarte foldence ancies	politic schiet & cole cilicate supertrite	91
	NCquad	metasanustone, quartz reiospar gneiss	meteopheteop	4,539
срс	NCquad	quartz diorite gneiss	metasandsone,quartz-feldspar gneiss, sc	8,002
CQ Cu1	Hatcher	calcsilicate quartzite		1,268
Cr1	NC002	snale&siltstone (Rome formation)	interpedded sandstone, shaley dolomite	2,575
Cr2	TN001	shale&siltstone (Rome formation)	interbedded sandstone,	72,148
crc	Hatcher			1,147

Cul	NCquad	metaconglomerate:metatuff, greenstone,	metamudstone w/arkosic metasand-silt	1,499
CZbb	NC002	gneiss	metasedimentary rock, amphib	5,269
CZgms	NC002	mica schist	Amphibolites	38,468
CZgs	SC001	mica schist	Amphibolites	31,076
CZma1	NC002	metasedimentary rock	Amphibolites	2,962
Dqd	NC002	quartz diorite	Granodiorite	60,037
DSwl	NCquad	quartz diorite to granodiorite	(this is the Looking Glass Gneiss)	508
DSwp	NCquad			1,889
egg1	NCquad	epidote-veined granitic gneiss	amphibolite, biotite granite, gneiss	479
egg2	NCquad	epidote-veined granitic gneiss	hornblende migmatite and amphibolites	31
gg	NCquad	granitic gneiss to protomylonite	biotite granitic gneiss(SE BrevFault)	3,285
ggg	NCquad	metasandstone with muscovite schist	many beds of calcareous concretions	1,389
gp	Hatcher			909
gt	NCquad	metasandstone with calcareous concretion	muscovite schist	18,848
kgms	NCquad	kyanite-garnet-muscovite-biotite schist		32
mbg3	NCquad	muscovite-biotite gneiss	biotite gneiss, metasubgreywacke	284
mgm	NCguad	banded gneiss and migmatite	biotite guartz, feldspar gneiss, micaschis	5,839
mgn	NCguad	mica gneiss	biotite schist, metasandstone, mica schi	11,866
mps	NCguad	muscovite-biotite paraschist	grades to biotite schist, quartz biotite	294
mvg1	NCguad	mylonite (flaser) gneiss	biotite granitic gneiss	2.183
mz	Hatcher			158
mz-gn	Hatcher			1.061
OCgm	NC002	granitic gneiss	hiotite gneiss	232 421
oek	Hatcher	Brannie Brielse		19
nhu	Hatcher			50
nCh	TN001	granite (interstitial mafics)	(chloritized biotite, bornblende)	64 646
ncht	Hatcher	granite gneiss: quartz nlagioclase	hiotite rich lavers	10 200
nchw	Hatcher	feldsnar-hiotite-muscovite-augen gneiss	w/anatite_zircon_clinozorizite	3 634
nct	Hatcher			3,034
nctl	Hatcher	greywacke-schist-amphiholite	(Tallulah Falls Formation)	104 465
ngw	NCauad	paragneiss & metagraywacke	high the schist metasandstone garnet sc	13 520
pgw pgw	64001	mica schist	Gneiss	3 010
0al	NCauad		Glieiss	22 599
aban	NCquad	auartz-hiotite-plagioclase gneiss		6 887
afaf	NCquad	quartzo-feldsnathic granofels	granitic gneiss amphibolite metaguartzi	4 345
y Si	Hatchor	qualizo-relaspatilic granoreis	granice gneiss, ampribolite, metaquartzi	4,545
Vbrg	NC002	gneiss feldspar megachysts	biotite schist, locally calcareous	32 085
Vda	NCguad	granitic to granodioritic	hiotite granitic gneiss amphibolites	2 085
Vfg	NCquad	folsic anoiss	interlayed w/biotite gnoise&hibolites	2,085
Vmgn2	NCquad	magnetite granitic gnoiss	migmatitic biotite bornblondo gnoiss	76
Vc	NCquad	grapitic graintic griefss	amphibalita, cale sileata granofale	1 070
TS Vcc	NCquad	biotite granitic gnoice	histita granodioritic gnoiss (amphib2)	1,970
750	NCquad	biotite granitic greiss	biotite granouloitite grieiss (amprilis)	16,095
Zago	NCquad	Inductivite-biotite griefss	metacand metacilt cale cilicate grapef	10,813
Zags	NCquad	schist and cross-biotite schist	metasanu., metasit. cac-sincate granor	3,193
Zakgs	NCquad		gamet-muscovite-biotite griefss	044
Zaqc	NCquad	quartz-siinozoisite gneiss	calc-silicate granodiorite, amphibolites	44
Zatrn	NC002	muscovite-piotite gneiss-locally sulphidic	graues w/mica scrist, minor ampnio, hrn.	1 022
ZaW	NCquad	тесадгаумаске	schist, gneiss, calc-silicate metagreywacke	1,932
Zcn	NC002	metagraywacke	slate, mica schist, calc-silicate nodule	368,306
Zco	NC002	quartz dioritic gneiss	feldspar-quartz-biotite gneiss, metasand	4,129
Zd	NC002	sericite schist, biotite, staurolite	metagraywacke, quartz metaconglom.	54,459
Zgms	NC002	metasiltstone, thin bedded dolomiticmarb	pnyllite, metagraywacke, meta-arkose	16,286
Zgsg	NCquad	metagraywacke, cyanite-garnet-mica schis	garnet-mica schist, calc-silicate granof	4,220
Zhha	NC002	metasandstone, metagray wacke, metasiltston	mica schist, calc-silicate local abundant	113,203
Zml	NC002	metasedimentary rock	slate, greenstone; meta-rhyolite	2,352
Zss	NC002	slate & metasiltstone	calcareous metasandstone,sandy m.limes	5,173
L .		ULTRAMAFIC ROCKS – g	group 7	1
ckum	NCquad	ultramafic, dunite, soapstone, serpentine	(Carrol Knob complex)	85
d	Hatcher	diorite (dikes w/hornblende, plagioclase	biotite, chlorite, serpentine, muscovite	41
du	NCquad	dunite		96
PzZu	NC002	meta-ultramafic (dunite, peridotite)	and serpentine, soapstone	10,099
PzZU	Hatcher	meta-ultramafic (dunite, peridotite)	and serpentine, soapstone	75
um	GA001	ultramafic		1.642

um	Hatcher	ultramafic		240					
Zud	NCquad	dunite	unaltered=olivine, altered=serpenite	314					
WATER									
water	GA001	water		6,206					

Apendix IX: Use of Ecological Zones

The Chattooga River Ecosystem Management Demonstration Project started in 1993 in South Carolina, Georgia, and North Carolina, was the first attempt at applying environmental models, like those used for developing Ecological Zones, to predict 'potential' plant community distribution across extensive landscapes in the Southeastern U.S. One of the primary goals of this project was to produce an ecological classification that would provide the information for implementing ecosystem management tied to the National Hierarchical Framework of Ecological Units, "a regionalization, classification and mapping system for stratifying the Earth into progressively smaller areas of increasingly uniform ecological potential for use in ecosystem management" (ECOMAP, 1993). What are now termed Ecological Zones were then called "plant association predictive models" or "Potential Vegetation". In the Chattooga project, plant association predictive models were developed, under the guidance of Henry McNab - Southern Forest Service Experiment Station, based upon the relationships between field locations of example plant association types and digitally derived landform factors such as elevation, landform index, and relative slope position (McNab 1991). These models were used in combination with soil maps to develop ecological units at different resolutions, i.e., Landtype Associations, Landtypes, and Landtype Phases.

In 1999, as part of the forest planning process on the Croatan National Forest, pre-settlement vegetation maps, equivalent to Ecological Zones (Frost 1996), were used to develop an Ecological Classification that included: Landtype Associations, Landtypes, and Landtype Phases, "A new tool that needed to be incorporated into the revised Plan" (USDA 2002). An ecological classification system was developed for the Croatan National Forest that provided a basis for ecologically based land management decisions. This classification organized the landscape into "units having similar topography, geology, soil, climate, and natural disturbance regimes" (USDA 2002) and was used to define management areas, management prescription boundaries, standards, and to set forest-wide objectives. Similarly, in 2001, the Forest Service in cooperation with the Department of Defense (DOD), Camp Lejeune Marine Corps. Base, developed an Ecological Classification System (ECS) to guide conservation management decisions for their Integrated Natural Resource Management Plan (INRMP). The ECS was based, in part, on a report titled "Presettlement Vegetation and Natural Fire Regimes of Camp Lejeune" by Cecil Frost, January 24, 2001, a map analogous to Ecological Zones. In DOD's most current INRMP, Camp Lejeune continues to refer to the ECS for overall guidance on the desired future condition for specialized habitat areas, i.e., natural areas (DOD 2006).

In 2001, the staff of the National Forests of North Carolina conducted a status review of management indicator species (MIS) habitats and population trends using Ecological Zone mapping to quantify the amount and distribution of plant community types on the Nantahala and Pisgah National Forests (USDA 2004a). Ecological Zones were also used to identify sites capable of supporting eastern and Carolina hemlock plant communities as part of a conservation area design to prioritize areas for Hemlock Woolly Adelgid control. Ecological Zones were used in the Uwharrie National Forest plan revision process to develop a map of the potential extent of Nature Serve Ecological Systems. This mapping provided the basis for the Ecological Sustainability Analysis and was used to help define management areas, restoration areas, and desired conditions, and to help set objectives and guidelines (USDA, 2009). Ecological Zones were used in a Plan amendment to evaluate the appropriateness of various management indicator species on the Nantahala and Pisgah National Forests (USDA, 2005), and were combined with satellite imagery to map existing vegetation on the Nantahala National Forest in a multi-year, USFS Southern Region pilot project to demonstrate a process for mid-level existing vegetation mapping suitable in the hardwood dominated forests of the Southern Region (USDA 2006).

In 2008, The Nature Conservancy provided support to evaluate the usefulness of an updated ecological zone map to predict landscapes that support fire-adapted plant communities in the Southern Blue Ridge Fire Learning Network (SBR-FLN). This updated map of ecological zones (titled the 2nd approximation) was completed by incorporating higher resolution digital elevation data and additional plot data from other areas within the Southern Appalachian Mountains. The result of this work expanded ecological zone modeling, i.e., mapping, to 5.9 million acres in the Southern Appalachians.

From 2008 to 2011, Ecological Zones were mapped in the Cumberland Plateau of Kentucky, in the South Mountains, Northern Escarpment, and New River Fire FLN landscapes within the Southern Blue Ridge (SBR) in North Carolina to evaluate the location and extent of fire-adapted plant communities. From 2009 to 2010, Ecological Zones were mapped in the Virginia-West Virginia Fire Learning Network study area and for the George Washington National Forest to evaluate fire-adapted plant communities and to provide vegetation mapping for the Forest Plan revision. In 2011, Ecological Zones were mapped on the Cherokee National Forest – northend as part of a landscape restoration initiative

Appendix X: FLN Landscape Area Comparisons, 3rd approximation Ecological Zone accuracy improvement

Ecological Zone	Project Area	North Escarp.	New River	Central Escarp.	South Mts.	Smoky / Unaka Mts.	Balsam Mts.	Nantahala Mts.	SBR Escarp.		
Size (1000s' of acres-rounded)	8,235	226	110	419	217	1,535	236	629	783		
Reference field plots	5,842	165	24	945	300	1,401	924	755	730		
	Percent correct map accuracy										
Grassy Bald	74	-	100	-	-	95	17	-	-		
Spruce-Fir	89	-	100	67	-	89	88	-	-		
Northern Hardwood (slope)	73	-	50	75	-	81	66	78	100		
Northern Hardwood (cove)	80	-	100	100	-	80	77	85	-		
Rich Cove	81	87	100	79	50	79	82	85	63		
Acidic Cove	81	83	-	84	80	80	80	90	76		
Mixed Oak / Rhododendron	68	84	-	72	65	59	50	75	63		
Alluvial Forest	78	91	-	81	100	82	-	33	40		
Floodplain	94	-	-	-	-	94	-	100	100		
High Elevation Red Oak	81	83	100	40	-	79	86	75	68		
Montane Oak (rich)	64	-	-	-	-	-	-	-	-		
Montane Oak (slope)	75	33	60	68	33	78	82	73	80		
Montane Oak (upper cove)	69	82	-	67	74	73	67	63	58		
Dry-Mesic Oak	74	96	-	65	71	73	33	71	78		
Dry Oak Evergreen Heath	69	40	-	75	74	60	67	55	70		
Dry Oak Deciduous Heath	78	-	-	75	80	79	-	80	50		
Shortleaf Pine-Oak	88	-	-	94	70	78	-	70	90		
SL Pine- Tblmt. Pine Oak Heath	82	-	-	82	-	-	-	-	-		
Pine-Oak Heath	82	67	-	82	75	89	73	88	63		
Heath Bald	74	-	-	-	-	79	60	-	-		
OVERALL accuracy	79	81	86	80	75	79	79	82	76		
Accuracy of the most fire-adapted category (below dashed line)	93	86	100	94	96	95	90	89	95		

 Table 1: Ecological Zone accuracy across the Southern Blue Ridge (SBR) study area ^{1/}

¹/ based on re-intersection of field data with modeled map units; *numbers in italics based upon fewer than 7 plots*

Table 2: Extent of 3 rd	approximation	Ecological Zones	across FLN	landscapes

Ecological Zone	Total FLN	North Escarp.	New River	Central Escarp.	South Mts.	Smoky / Unaka Mts.	Balsam Mts.	Nantahala Mts.	SBR Escarp.
	4,155,540	419,310	109,850	419,310	216,580	1,535,300	235,670	629,010	783,440
			Exter	nt in acres (rounded to	nearest 10 a	cres)		
Grassy Bald	1,370	-	12	11	-	1,070	170	110	-
Spruce-Fir	54,550	1	2,650	1,130	-	35,600	12,560	2,540	70
Northern Hardwood (slope)	39,660	-	3,060	1,210	-	18,530	8,460	8,290	110
Northern Hardwood (cove)	103,800	1	8,470	510	-	63,260	15,300	16,200	60
Rich Cove	516,740	10,640	26,680	40,120	11,110	201,120	48,000	140,560	38,510
Acidic Cove	760,710	46,250	19,420	99,820	48,910	267,380	44,430	132,080	102,420
Mixed Oak / Rhododendron	144,000	37,890	2,850	24,940	8,180	11,040	7,740	19,910	31,450
Alluvial Forest	87,720	10,830	2,010	18,440	12,200	40,500	-	820	2,920
Floodplain	31,190	-	-	280	-	18,730	430	3,230	8,520
Lakes	18,560	-	-	-	-	-	-	7,780	10,780
High Elevation Red Oak	78,260	4,890	4,070	1,400	-	22,180	27,190	16,920	1,610
Montane Oak (rich)	140	-	-	-	-	140	-	-	-
Montane Oak (slope)	397,710	13,290	23,330	18,450	1,160	184,480	40,700	82,220	34,080
Montane Oak (upper cove)	380,290	52,530	7,700	40,380	26,570	151,500	7,920	46,190	47,500
Dry-Mesic Oak	563,390	25,650	900	37,030	21,770	191,450	6,900	57,290	222,400
Dry Oak Evergreen Heath	202,170	12,860	3,490	29,450	16,520	53,350	5,860	15,600	65,040
Dry Oak Deciduous Heath	69,800	30	1	600	15,290	24,370	90	8,210	21,210
Shortleaf Pine-Oak	357,250	10	-	47,540	44,610	78,940	610	21,800	163,880
SL Pine- Tblmt. Pine Oak Heath	870	-	-	870	1	-	-	-	-
Pine-Oak Heath	345,250	11,500	5,210	57,130	10,260	169,790	9,270	49,210	32,880
Heath Bald	1,960	-	-	-	-	1,870	40	50	-

	3 rd Approximation			2 st Approximation		
	extent		e		extent	
Ecological Zone	accuracy	acres	%	accuracy	acres	%
Grassy Bald	17	170	0.1	0	60	0.0
Spruce-Fir	88	12,560	5.3	55	3,930	1.7
Northern Hardwood (slope)	66	8,460	3.6	23	10,300	4.4
Northern Hardwood (cove)	77	15,300	6.5	50	16,630	7.1
Rich Cove	82	48,000	20.4	65	42,400	18.0
Acidic Cove	80	44,430	18.9	42	48,830	20.7
Mixed Oak / Rhododendron	50	7,740	3.3	5	15,510	6.6
Alluvial Forest	-	-	-	-	1 220	0.5
Floodplain	-	430	0.1	-	1,230	0.5
High Elevation Red Oak	86	27,190	11.5	78	31,700	13.5
Montane Oak (rich)	-	-	-	-	-	-
Montane Oak (slope)	82	40,700	17.3	-	40.010	24.4
Montane Oak (upper cove)	67	7,920	3.4	37	49,810	21.1
Dry-Mesic Oak	33	6,900	2.9	0	5,310	2.3
Dry Oak Evergreen Heath	67	5,860	2.5	0	5 550	2.4
Dry Oak Deciduous Heath	-	90	0.0	-	5,550	2.4
Shortleaf Pine-Oak	-	610	0.3	-	400	0.2
SL Pine- Tblmt. Pine Oak Heath	-	-	-	-	100	0.0
Pine-Oak Heath	73	9,270	3.9	0	3,750	1.6
Heath Bald	60	40	0.0	40	5	0.0
not modeled	-	-	-		-	-
OVERALL	79	235,520	100	51	235,520	100
Most fire-adapted category (below dashed line)	90	98,580	41.9	81	96,620	41.0

Table 3: Ecological Zone a	accuracy a	nd extent	in the Balsa	m Mtns. La	andscape ^{1/}
	rd		5		

 $\frac{1}{2}$ based on re-intersection of 924 field plots with modeled map units; numbers in italics are based upon fewer than 7 plots, a dash indicates that no plots were sampled in this area within this type or this type does not occur within this area; rounded to the nearest 10 acres

	3 rd Approximation			2 nd Approximation		
		exten	extent		exter	nt
Ecological Zone	accuracy	acres	%	accuracy	acres	%
Grassy Bald	-	11	0.0	-	1,030	0.3
Spruce-Fir	67	1,130	0.3	0	260	0.1
Northern Hardwood (slope)	75	1,210	0.3	0	1,770	0.4
Northern Hardwood (cove)	100	510	0.1	100	1,580	0.4
Rich Cove	79	40,120	9.4	5	28,780	7.1
Acidic Cove	84	99,820	23.5	80	108,340	26.6
Mixed Oak / Rhododendron	72	24,940	5.9	0	4,610	1.1
Alluvial Forest	81	18,440	4.3	37	30,890	7.6
Floodplain	-	280	0.1	-	0	0.0
High Elevation Red Oak	40	1,400	0.3	60	3,280	0.8
Montane Oak (rich)	-	-	-	-	-	-
Montane Oak (slope)	68	18,450	4.3	50	122 (10	20.1
Montane Oak (upper cove)	67	40,380	9.5	29	122,010	30.1
Dry-Mesic Oak	65	37,030	8.7	1	4,190	1.0
Dry Oak Evergreen Heath	75	29,450	6.9	C	11 690	2.0
Dry Oak Deciduous Heath	75	600	0.1	б	11,680	2.9
Shortleaf Pine-Oak	94	47,540	11.2	37	33,960	8.3
SL Pine- Tblmt. Pine Oak Heath	82	870	0.2	34	3,410	0.8
Pine-Oak Heath	82	57,130	13.4	65	51,300	12.6
Heath Bald	-	-	-	-	60	0.0
OVERALL	80	419,311	100	50	407,750	100
not modeled					10,561	
Most fire-adapted category (below dashed line)	94	232,840	54.7	88	230,478	56.5

Table 4: Ecological Zone accuracy and extent within the Central Escarpment Landscape ^{1/}

¹⁷ based on re-intersection of 945 field plots with modeled map units; *numbers in italics are based upon fewer than 7 plots* a dash indicates that no plots were sampled in this area within this type or this type does not occur within this area; rounded to the nearest acre

Table 5: Ecological Zone accuracy	y and extent in the Nantahala Mtns. Landsca	ape ¹

	3 rd Approximation			2 st Approximation		
	extent			extent		
Ecological Zone	accuracy	acres	%	accuracy	acres	%
Grassy Bald	-	110	0.0	-	810	0.1
Spruce-Fir	-	2,540	0.4	-	510	0.1
Northern Hardwood (slope)	78	8,290	1.3	18	5,330	0.8
Northern Hardwood (cove)	85	16,200	2.6	64	14,230	2.3
Rich Cove	85	140,560	22.3	22	50,350	8.0
Acidic Cove	90	132,080	21.0	86	209,280	33.3
Mixed Oak / Rhododendron	75	19,910	3.2	30	44,190	7.0
Alluvial Forest	33	820	0.1	14	20.180	2.2
Floodplain	100	3,230	0.5	-	20,180	5.2
High Elevation Red Oak	75	16,920	2.7	81	29,860	4.7
Montane Oak (rich)	-	-	-	-	-	-
Montane Oak (slope)	73	82,220	13.1	-	170.000	20.2
Montane Oak (upper cove)	63	46,190	7.3	22	178,000	28.3
Dry-Mesic Oak	71	57,290	9.1	13	12,530	2.0
Dry Oak Evergreen Heath	55	15,600	2.5	0	14.020	2.2
Dry Oak Deciduous Heath	80	8,210	1.3	-	14,020	2.2
Shortleaf Pine-Oak	70	21,800	3.5	20	4,390	0.7
SL Pine- Tblmt. Pine Oak Heath	-	-	-	-	720	0.1
Pine-Oak Heath	88	49,210	7.8	44	44,560	7.1
Heath Bald	-	50	0.0	-	50	0.0
lakes	-	7,780	1.2	-	-	-
OVERALL	82	629,010	100	47	629,010	100
Most fire-adapted category (below dashed line)	89	297,480	47.3	78	284,120	45.2

¹⁷ based on re-intersection of 924 field plots with modeled map units; *numbers in italics are based upon fewer than 7 plots,* a dash indicates that no plots were sampled in this area within this type or this type does not occur within this area; rounded to the nearest 10 acres

	2 rd Approximation			1 st Approximation		
		exten	t		exter	nt
Ecological Zone	accuracy	acres	%	accuracy	acres	%
Grassy Bald	100	12	0.0	0	-	-
Spruce-Fir	100	2,650	2.4	0	15	0.0
Northern Hardwood (slope)	50	3,060	2.8	0	4,140	3.8
Northern Hardwood (cove)	100	8,470	7.7	80	2,210	2.0
Rich Cove	100	26,680	24.3	0	750	0.7
Acidic Cove	-	19,420	17.7	-	36,110	33.1
Mixed Oak / Rhododendron	-	2,850	2.6	-	1,480	1.4
Alluvial Forest	-	2,010	1.8	-	2,600	2.4
Floodplain	-	-	-	-	-	-
High Elevation Red Oak	100	4,070	3.7	83	3,720	3.4
Montane Oak (rich)	-	-	-	-	-	-
Montane Oak (slope)	60	23,330	21.2	00	56.000	F1 4
Montane Oak (upper cove)	-	7,700	7.0	80	50,080	51.4
Dry-Mesic Oak	-	900	0.8	-	-	-
Dry Oak Evergreen Heath	-	3,490	3.2		2	0.0
Dry Oak Deciduous Heath	-	1	0.0	-	2	0.0
Shortleaf Pine-Oak	-	-	-	-	-	-
SL Pine- Tblmt. Pine Oak Heath	-	-	-	-	-	-
Pine-Oak Heath	-	5,210	4.7	-	2,100	1.9
Heath Bald	-	-	-	-	-	-
not modeled	-	-	-		-	-
OVERALL	88	109,850	100	54	109,200	100
Most fire-adapted category (below dashed line)	100	44,700	40.7	100	61,910	56.7

Table 6: Ecological Zone a	accuracy and extent in the	New River Landscape ^{1/}	
	2 rd Approximation	1 st Approximation	

 $\frac{1}{2}$ based on re-intersection of 24 field plots with modeled map units; *numbers in italics are based upon fewer than 7 plots*, a dash indicates that no plots were sampled in this area within this type or this type does not occur within this area; rounded to the nearest acre
	2 rd Approximation		1 st Approximation			
		extent			extent	
Ecological Zone	accuracy	acres	%	accuracy	acres	%
Grassy Bald	-	-	-	-	-	-
Spruce-Fir	-	1	0.0	-	-	-
Northern Hardwood (slope)	-	-	-	-	-	-
Northern Hardwood (cove)	-	1	0.0	-	-	-
Rich Cove	87	10,640	4.7	87	3,330	1.4
Acidic Cove	83	46,250	20.4	83	40,260	17.3
Mixed Oak / Rhododendron	84	37,890	16.7	81	39,750	17.1
Alluvial Forest	91	10,830	4.8	91	6,290	2.7
Floodplain	-	-	-	-	-	-
High Elevation Red Oak	83	4,890	2.2	75	3,750	1.6
Montane Oak (rich)	-	-	-	-	-	-
Montane Oak (slope)	33	13,290	5.9	00	90,630	20.0
Montane Oak (upper cove)	82	52,530	23.2	88		39.0
Dry-Mesic Oak	96	25,650	11.3	70	37,400	16.1
Dry Oak Evergreen Heath	40	12,860	5.7	0		
Dry Oak Deciduous Heath	-	30	0.0	0	-	-
Shortleaf Pine-Oak	-	10	0.0	-	-	-
SL Pine- Tblmt. Pine Oak Heath	-	-	-	-	-	-
Pine-Oak Heath	67	11,500	5.1	90	11,130	4.8
Heath Bald	-	-	-	-	-	-
OVERALL	81	226,370	100	79	232,540	100
not modeled	-	6,180				
Most fire-adapted category (below dashed line)	86	120,750	53.3	87	182,660	78.5

Table 7: Ecological Zone accuracy and extent within the Northern Escarpment Landscape

1/ based on re-intersection of 165 field plots with modeled map units; numbers in italics are based upon fewer than 7 plots, a dash indicates that no plots were sampled in this area within this type or this type does not occur within this area; rounded to the nearest acre

	3 rd Approximation			2 st Approximation		
		extent	:		extent	
Ecological Zone	accuracy	acres	%	accuracy	acres	%
Grassy Bald	95	1,070	0.1	33	1,870	0.2
Spruce-Fir	89	35,600	2.3	49	24,970	2.2
Northern Hardwood (slope)	81	18,530	1.2	5	22,960	2.0
Northern Hardwood (cove)	80	63,260	4.1	50	54,150	4.8
Rich Cove	79	201,120	13.1	21	82,940	7.3
Acidic Cove	80	267,380	17.4	79	354,630	33.1
Mixed Oak / Rhododendron	59	11,040	0.7	0	9,390	0.8
Alluvial Forest	82	40,500	2.6	70	20,100	3.4
Floodplain	94	18,730	1.2	/3	39,100	
High Elevation Red Oak	79	22,180	1.4	50	60,850	5.3
Montane Oak (rich)	-	140	0.0	-	-	-
Montane Oak (slope)	78	184,480	12.0	25	242.000	21.2
Montane Oak (upper cove)	73	151,500	9.9	25	242,090	21.3
Dry-Mesic Oak	73	191,450	12.5	6	8,130	0.7
Dry Oak Evergreen Heath	60	53,350	3.5	40	22.220	2.0
Dry Oak Deciduous Heath	79	24,370	1.6	49	33,230	2.9
Shortleaf Pine-Oak	78	78,940	5.1	7	9,610	0.8
SL Pine- Tblmt. Pine Oak Heath	-	-	-	75	2,600	0.2
Pine-Oak Heath	89	169,790	11.1	71	191,910	16.9
Heath Bald	79	1,870	0.1	0	110	0.0
OVERALL	79	1,535,300	100	42	1,138,540	100
not modeled					396,740	
Most fire-adapted category (below dashed line)	95	878,070	57.2	80	548,530	48.2

Table 8: Ecological Zone accuracy and extent in the Smoky-Unaka Landscape^{1/}

¹⁷ based on intersection of 1,401 field plots with modeled map units (1.214 plots in 2rd approximation); *numbers in italics are based upon fewer than 7 plots*, a dash indicates that no plots were sampled in this area within this type or this type does not occur within this area; rounded to the nearest 10 acres

	3 rd Approximation			2 st Approximation			
		extent		ex		tent	
Ecological Zone	accuracy	acres	%	accuracy	acres	%	
Grassy Bald	-	-	-	-	720	0.1	
Spruce-Fir	-	70	0.0	-	90	0.0	
Northern Hardwood (slope)	100	110	0.0	18	2,250	0.3	
Northern Hardwood (cove)	- 1	60	0.0	64	210	0.0	
Rich Cove	63	38,510	4.9	22	41,320	6.4	
Acidic Cove	76	102,420	13.1	86	138,610	21.4	
Mixed Oak / Rhododendron	63	31,450	4.0	30	96,270	14.9	
Alluvial Forest	40	2,920	0.4	14	20.400		
Floodplain	100	8,520	1.1	-	20,190	3.1	
High Elevation Red Oak	68	1,610	0.2	81	1,350	0.2	
Montane Oak (rich)	-	-	-	-	-	-	
Montane Oak (slope)	80	34,080	4.4	-	04 200	14.1	
Montane Oak (upper cove)	58	47,500	6.1	22	91,290		
Dry-Mesic Oak	78	222,400	28.4	13	133,930	20.7	
Dry Oak Evergreen Heath	70	65,040	8.3	0			
Dry Oak Deciduous Heath	50	21,210	2.7	-	9,050	1.4	
Shortleaf Pine-Oak	90	163,880	20.9	20	89,640	13.8	
SL Pine- Tblmt. Pine Oak Heath	-	-	-	-	5,640	0.9	
Pine-Oak Heath	63	32,880	4.2	44	16,980	2.6	
Heath Bald	- 1	-	-	-	50	0.0	
lakes	- 1	10,780	1.4	-	-	-	
Total modeled	76	783,440	100	47	647,590	100	
not modeled	1	84,030			219,730		
Most fire-adapted category in modeled area (below dashed line)	95	588,480	75.1	78	347,930	53.7	

Table 9: Ecological Zone accuracy and extent in the Southern Blue Ridge Escarpment Landscape ^{1/}

 J^{J} based on re-intersection of 945 field plots with modeled map units; *numbers in italics are based upon fewer than 7 plots*, a dash indicates that no plots were sampled in this area within this type or this type does not occur within this area; rounded to the nearest 10 acres

	2 rd Approximation		1 nd Approximation			
		extent			extent	
Ecological Zone	accuracy	acres	%	accuracy	acres	%
Grassy Bald	-	-	-	-	-	-
Spruce-Fir	-	-	-	-	-	-
Northern Hardwood (slope)	-	-	-	-	-	-
Northern Hardwood (cove)	-	-	-	-	-	-
Acidic Cove	80	48,910	22.6	62	0.000	4.5
Mixed Oak / Rhododendron	65	8,180	4.8	62	9,690	
Alluvial Forest	100	12,200	0.2	100	17,590	8.1
Floodplain	-	-	-	-	-	-
Rich Cove	50	11,110	5.1	62	26.074	42.0
Montane Oak (upper cove)	74	26,570	6.5	63	26,074	12.0
High Elevation Red Oak	-	-	-	-	-	-
Montane Oak (rich)	-	-	-	-	-	-
Montane Oak (slope)	33	1,160	11.4	-	-	-
Dry-Mesic Oak	71	21,770	10.2	60	21,000	9.7
Dry Oak Evergreen Heath	74	16,520	4.8	50	21.020	0.7
Dry Oak Deciduous Heath	80	15,290	0.9	29	21,030	9.7
Shortleaf Pine-Oak	70	44,610	4.2	100 2/	^{2/} 116,930	54.0
SL Pine- Tblmt. Pine Oak Heath	-	1	0.1	-	-	-
Pine-Oak Heath	75	10,260	9.7	62	4,270	2.0
Heath Bald	-	-	-	-	-	-
OVERALL	75	216,580	100	63	216,580	100
Most fire-adapted category (below dashed line)	96	136,180	62.9	95	189,300	87.4

Table 10: Ecological Zone accuracy and extent in the South Mountains Landscape ^{1/}

¹³ based on re-intersection of 300 field plots with modeled map units; *numbers in italics are based upon fewer than 7 plots*, a dash indicates that no plots were sampled in this area within this type or this type does not occur within this area rounded to the nearest 10th acre.

Table 11: Ecological Zone accuracy	y and extent on State lands in the South Mountains Landscape ^{1/}

	2 rd Approximation			1 nd Approximation		
		extent	extent		extent	
Ecological Zone	accuracy	acres	%	accuracy	acres	%
Grassy Bald	-	-	-	-	-	-
Spruce-Fir	- 1	-	-	-	-	-
Northern Hardwood (slope)	-	-	-	-	-	-
Northern Hardwood (cove)	-	-	-	-	-	-
Acidic Cove	80	5,170	13.7		2,100	0.5
Mixed Oak / Rhododendron	65	3,410	9.1	66	3,180	8.5
Alluvial Forest	100	420	1.1	100	470	1.2
Floodplain	-	-	-	-	-	-
Rich Cove	33	1,330	3.5	60	8 640	22.0
Montane Oak (upper cove)	85	5,710	15.2	08	8,040	23.0
High Elevation Red Oak	-	-	-	-	-	-
Montane Oak (rich)	- 1	-	-	-	-	-
Montane Oak (slope)	50	310	0.8	-	-	-
Dry-Mesic Oak	69	5,390	14.3	56	5,220	13.9
Dry Oak Evergreen Heath	78	4,490	11.9	60	7.040	20.0
Dry Oak Deciduous Heath	79	6,650	17.7	60	7,840	20.8
Shortleaf Pine-Oak	100	870	2.3	100	^{2/} 9,250	24.6
SL Pine- Tblmt. Pine Oak Heath	-	-	-	-	-	-
Pine-Oak Heath	76	3,890	10.3	65	3,030	8.1
Heath Bald	-	-	-	-	-	-
OVERALL	75	37,630	100	64	37,630	100
Most fire-adapted category (below dashed line)	97	27,310	72.6	95	33,980	90.3

Category (below dashed line) ³⁷ based on re-intersection of 237 field plots with modeled map units; *numbers in italics are based upon fewer than 7 plots*, a dash indicates that no plots were sampled in this area within this type or this type does not occur within this area rounded to the nearest 10th acre. ²⁷ overestimate based upon too many plots in private land and too few plots on public land

Appendix XI: Codes for Ecological Zones and NatureServe Ecological Systems

Code	Ecological Zone name
1	Spruce
2	Northern Hardwood Slope
3	Northern Hardwood Cove
4	Acidic Cove
5	Rich Cove
6	Alluvial Forest
8	High Elevation Red Oak
9	Montane Oak Hickory Slope
10	Dry Oak Evergreen Heath
11	Dry Oak Deciduous Heath
13	Dry Mesic Oak
16	Low Elevation Pine
18	Pine-Oak Heath
23	Large Floodplain
24	Montane Oak-Hickory Rich
27	Grassy Bald
28	Montane Oak-Hickory Cove
29	Mixed Oak / Rhododendron
30	Heath Bald
31	Shortleaf pine-oak heath
98	Reservoirs, Lakes, and Ponds

Code	NatureServe Ecological System
1	Central and Southern Appalachian Spruce-Fir Forest
2	Appalachian (Hemlock)-Northern Hardwood
4	Southern and Central Appalachian Cove Forest
6	Central Interior and Appalachian Riparian Systems
8	Central and Southern Appalachian Montane Oak
9	Southern and Central Appalachian Northern Red Oak-Chestnut Oak Forest
10	Allegheny-Cumberland Dry Oak Forest and Woodland
13	Southern Appalachian Oak Forest
16	Southern Appalachian Low-Elevation Pine
18	Southern Appalachian Montane Pine Forest and Woodland
23	Central Interior and Appalachian Floodplain Systems
27	Southern Appalachian Grass and Shrub Bald

98 Other: Reservoirs, Lakes, and Ponds